学年

教科

質問の種類

公務員試験 大学生・専門学校生・社会人

練習問題②のstep2までは理解できたのですが、p.203の、AとBが5:3の速さの比で進むのですから、Aは残りの道のりの8分の5進んだ時にBと出会うというところが理解できません。 どうして、10:10に出発して20分かかる道のりの8分の5進んだところで出会うと分かるので... 続きを読む

練習問題 ② 市とQ町は1本道で通じている。 AはP市を午前10時に出発し てQ町に午前10時30分に到着した。 B は Q町を午前10時10分 に出発してP市に午前11時に到着した。 2人はそれぞれ一定の速さ で歩いたとすると,途中でAとBがすれ違った時刻として正しいも のは、次のうちどれか。 1 午前10時21分30秒 2 午前10時22分30秒 3 午前10時23分30秒 4 午前10時24分30秒 5 午前10時35分30秒 Step 「時間の比は? AはP市を10時に出発して Q町に10時30分に到 着,BはQ町を10時10分に出発してP市に11時に到 着ですから, PQ の距離をAは30分, B は 50分かかっ て歩いたことになります。 同じ距離を歩いたときの時間 の比は30:50=3:5です。 P市 ( 10時) step ② 速さの比は? AとBは同じ距離を歩いたので, 歩く速さの比は, 時間の逆比で5:3です。 Step③ 10時10分のAの位置は? では,Bが出発する 10時10分に Aはどこを歩いて いるでしょうか。 Q町 20(分) ( 10時30分) 10 (分) P市を10時に出発してQ町に10時30分に到着,こ の間に歩く速さは変わらないので, 10時10分にはP 市から Q町までの道のりの 1 2 進んだところにいるはず [H17 大卒警察官】 ! 速さ・時間・ 距離の比 時間が一定のとき. 速さの比がa:bなら. 距離の比もa:b ・速さが一定のとき. 時間の比がa:bなら. 距離の比もa:b ・距離が一定のとき 速さの比がa:bなら. 時間の比は b:α 逆比 になる 同じ距離を進むのであれ ば、速さが速いほどかかる 時間は短くなると考えると わかりやすいですね。 5,Aは残りの道のりの進んだときに, B と出会います。 です。また, AとBが5:3の速さの比で進むのですか Pifi Q町 P市 10時10分に出発して, 20分かかる道のりの進んだと ころで出会うので, 20 x- W →A ⑤ 出会う時刻は10時10分の12分30秒後で10時22分30 秒になります。 OT 1 x = 12.5〔分後], 10 A 20 T -A- B 3 別解 ダイヤグラムでもOK 3分で開ける! テーマ18であつかったダイヤグラムの考え方でも解 くことができます。 この問題の様子をダイヤグラムに表 すと、次の図のようになります。Aの進む様子は OX, Bの進む様子は WZが表します。 ① Y = 22.5 Q町 X 正答: 2 U Z /30 40 50 60 比をひっくり返したもの・・・・ ではありませんよ。 13:2の比は1/35 : 12/12 す。 ただ 1/3/12/2=2:3で 逆比? すから、2つの数の比のと きは, 比をひっくり返した ものになるのです。 また、3つの数の比. たと えば4:36の逆比は △ YOZ と△ YXW が相似ですから, OY : XY = OZ: XW=60:20=3:1より, OYOX = 3:4 また, OTY と OUX が相似ですから, OT: OU = OY: OX = 3:4 1:1/13:1/6=3:4:2 OUの長さが30分なのでOT の長さにあたる時間は, OT:30 3:4 OT × 4 = 30 × 3 40T = 90 90 = です。 逆比は反比ともい い 反比例を考えることと 同じです。 したがって, 出会う時刻は10時22分30秒後です。 時間をそろえてから 距離を考えて! この問題では、Aが出発す る時刻とBが出発する時 刻が同じではないので 遅 れて出発するBの時刻 ( 10 時10分) でのAの位置を 求めてから問題を解きま す。 距離の比が速さの比と 同じになるのは 「進んだ時 間が等しいとき」であるこ とに注意しましょう。 第5得点アップ保証!最強の解法はこれだ 203

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

全部わかりません。 助けてください😭

右のデータは, 1パックに入っていた10個の卵の重さを計測し, 小数第1位を四捨五入したものである。このデータについて,次のも のを求めよ。 (1) 平均値と中央値 考え方 1 63 60 56 59 63 64 58 60 59 58 (単位:g) e) トン の( 中央値は, データを大きさの順に並べたときに中央にくる値。データの個数が偶数の 肉) 場合は,中央の2つの値の平均をとる。 でよ さでのモ モ) (2) 四分位偏差 考え方 データを大きさの順に並べたとき,4等分する値を小さいほうから, 第1四分位数,第 2四分位数(中央値), 第3四分位数とよび, (第3四分位数)- (第1四分位数) を四分位範 囲という。四分位偏差とは, この四分位範囲の2分の1のこと。 (3) 標準偏差 (根号がついたままでよい) 回 合 Hoof 合 効 ケま 旨ケ対学小 右の表は,ある神社の境内にある杉のうち, 樹齢のわ かっている5本について, 樹齢工年と地上1mにおける幹 の直径y cm を調べたものである。次の問いに答えよ。 (1) エ, yのデータの組を表す点を右の ry平面上にとり, この5本の杉の樹齢と直径の間にはどのような関係があ るか答えよ。 2 樹木番号 の 2 3 r(年) 42 29 60 39 55 y (cm) 20 16 32 21 36 プレートは 合場 160食 40 (2) 変量z, yのn個の組(zi, y), …, (In, Y)がある 30 とき, エ, yの平均をそれぞれz, y として 20 今度× 10 Szy n (zュ-) ( …+(zn-エ) (4-) 大ゲ光 合 t 0 10 20 30 40 50 60 エ を2, yの共分散という。また, エ, yの標準偏差をそれ ぞれ Sz, Sy とするとき 手国S の女ゆはで送へ (yーy)(z-ェ)(y-y) Szy =ー SzX Sy リ-y I 2(エーエ) - Slool で計算される値rを, zとyの相関係数とい う。右の表を埋めて, 5本の杉の樹齢と直径 の相関係数を求めよ (小数第2位を四捨五 の 42 20 代ン出く の 29 16 (3 60 32 39 21 るるっ 36 55 入して,小数第1位ま ので)。計算には電卓を 実使用してよい。 0 0 計| 225 125 =」のリニ ラ ー 15

回答募集中 回答数: 0