学年

教科

質問の種類

物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

マクロ経済学です。Aの(3)、(4)、大問C、C-2の解き方が分かりません。

● 「択一式の問題用紙」 は両面印刷で3枚(片面で5ページ分) あります。 大間はA~Dの4題、 小間 は (1)~(20) の合計 20問です。 それに続いて計算用紙 (白紙) 3枚付属しています (適宜、 ホッチ キスから外して使用してください)。 「択一式の問題用紙(計算用紙を含む)」は持ち帰ってください。 「択一式の解答用紙」 はマークシート方式で、全部で1枚あります。 同解答用紙には、名前、学籍番 号(手書き及び番号のマーク)、 学類名を必ず記入してください (提出者を特定することができなか った場合は、原則として欠席の扱いになります)。 「択一式の解答用紙」 は必ず提出してください。 択一式問題 (選択肢から一つを選ぶ問題) は、二つ以上の選択肢を選んで解答 (マーク) した場合、 その問題の得点は0点となりますので十分に注意してください。 [大問 A] 閉鎖経済のパンナコッタ共和国における下記の経済データを用いて以下の(1)~(4) の問いに答え、 選択 肢から正しい解答を一つ選びなさい。 ただし、物価水準は考慮せず、 名目と実質の区別はしません。 また、 政府からの移転所得(年金や子供手当など) はゼロ、 統計上の不突合もゼロとします。 雇用者報酬 営業余剰 固定資本減耗 総税収 450 間接税収 200 政府補助金 50 財政収支 100 民間貯蓄 (1) 国内総生産(GDP、 Gross Domestic Product) を求めなさい。 1650 ②700 ③720 4750 (2) 政府支出を求めなさい。 ①50 290 3120 ④160 (3) 民間投資を求めなさい。 100 ②140 3200 ④250 (4) 民間消費を求めなさい。 ①470 ②500 ③540 ④570 70 50 -20 120

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0