学年

教科

質問の種類

歴史 大学生・専門学校生・社会人

お願いします

問題 1. 以下の文章の空欄 A~Tにあてはまる適語を、語群の中にある(あ) (ん)から選んで記号で答えよ。 税制が備えるべき望ましい条件を示したものである租税原則は、古くは16世紀の経済学の父として有名な(A)の4原 則が有名である。 (A)は、政府の役割は市場で供給できない (B)、行政、(C)などの必要最小限でよいと考え た。この考え方は(D)と呼ばれている。 (A)は課税の根拠として (E)によった。一方、(F) 世紀のドイ ツ歴史学派に所属した (G)は課税の根拠として(H)によった。 ( A ) 以降、租税原則はさまざまな形で発展し、 現在の租税原則として ( 1 ) (J) (K) の3つに集約されている。 1つ目の(Ⅰ)の考え方としては、 「経済的 にみて等しい状態にある人々は等しく取り扱われる」という(L) と、 「税負担能力の大きなものがより大きな租税負担を すべきである」という(M)がある。2つ目の(J)の考え方は、経済における (N)にゆがみをもたらさないよ うな課税が望ましいというものである。 この(N)へのゆがみのことを ( 0 ) とよぶ。 例えば、消費税による(N) へのゆがみを小さくしようとするならば、 価格弾力性が (P)財に重課、 価格弾力性が ( Q ) 財に軽課すべきであると いう考え方がある。これは(R)と呼ばれている。3つ目の(K) は、 税制がわかりやすいものであるべきであり、こ れによって(S) と(T)の費用が少なくなるというものである。 語群 (あ)計測性 (い)ワグナー (う)所得分配 (え)行列的公平 (お) 18 (か)国防 (き) 高い (く) 食糧供給 (け)弾力性命題 (こ)配達 (さ)夜警国家 (し)水平的公平 (す)低い (せ)アントニオ (そ)公正的公平(た)資源配分 (5) 天下泰平(つ)ス ミス (て)強制説 (と)徴税 (な)簡素(に)暗黙説 (ぬ)ロールズ (ね)義務説(の)実証説 (は)効率性(ひ)普遍性 (ふ)ラムゼー・ルール (へ)超過負担 (ほ)国民年金 (ま)利益説 (み)16 (む)分権性(め)流通 (も)公共的公平(や)確実 (ゆ)民主国家 (よ)垂直的公平 (5)19(り)17 (る) 納税 (れ) 司法 (ろ) 歪曲分配 (わ)資金循環(を)強靭国家 (ん)公平性 問題 2-1. 下の文章における空欄(①)から(2)を語群から選んで埋めよ。番号は違えども同じ語句が入ることが

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の力学の問題について質問です。 過去問を解きたいのですが全く答えが分からないため、解いて頂けないでしょうか?

物理学 ⅡⅠ 期末試験 問題用紙も回収します。 選択式の問題は、正しい選択肢を記号で記すこと。 記述式の 問題は、解答だけではなく、 解答に至る考え方も書くこと。 ベクトルはそれとわかる よう書くこと. ① 質量mの質点の位置ベクトルを、運動方程式を Fとする。 (1) 質点の原点のまわりの回転の運動方程式を導出せよ。 (2) 外力Fが中心力のとき、 角運動量が保存することを示せ。 (3) 質点が (x,y) 平面内を運動する場合、 原点のまわりの角運動量を極座標 (r, Φ) を用いて表せ。 2② 軽い針金でできた一辺lの立方体の枠がある。 1つの頂点に糸をつけ、隣接す 頂点P1, P2, P3 にそれぞれ質量 mi, m2, m3 のおもりをつけて吊り下げたとこ ろ、静止した。 重力加速度ベクトルをg とし、 OP = r. (i=1,2,3) とおく。 7₁ g↓ (1) 系の重心 (質量中心) Gの位置ベクトルrc をri を用いて表せ。 (2) 重力は重心Gに働くとしてよいことを示せ。 (3) 糸の張力の大きさを求めよ。 (4) 重心G と支点は鉛直線上に並ぶことを示せ。 (5) OP が回転軸のときの慣性モーメントI を求めよ。 (6) P1P が回転軸のときの慣性モーメントⅠ'を求め よ。 3 固定軸のまわりで回転する剛体を考える。 剛体の質量をM,重心GとOとの距離をん, 剛体 の軸Oのまわりの慣性モーメントをIとする。 図 のようにx,y,z軸を取り、 剛体の運動を偏角めで 表す。 重力加速度をg とする。 x P3 Ø R 2₂ G Mg P2 P1 (1) 回転の方程式として正しいものを選べ。 do (a) IapzMgh cos o (b) latMghsin o (c) IamMgh cos o (d) apzMgh sino (2) 運動は微小振動であるとする。 周期Tとして正しいものを選べ。 Mgh (a) 2 I I 9 (b) 2 Mgh 2ヶ (c) 21 (d) 2π√√ h 9 (3) 運動は微小振動であるとする。 初期条件として、角度だけ持ち上げて静か に離した。このときの重心の運動として正しいものを選べ。 但し以下では、 は微小振動の角振動数を表す。 (a) r(t) = hoo cos(ft), y(t) = h (c) π(t)=hdo sin (St), y(t)=h (e) x(t)=hdocos (ft), y(t)=hdo sin(St) (b) x(t)=h, y(t)=hdocos (nt) (d) π(t)=h, y(t) hdo sin (St) = (4) 前間の重心運動に対応した回転軸Oに働く抗力 R = Rzex + Ryey として正 しいものを選べ。 (a) R=-Mg, Ry=MhQdocos (t) (b) R=0, Ry=MhΩ2 do sin (nt) (c) R-Mg, Ry=0 (d) R=MhQ2 do cos (St), Ry=MhΩ do sin (Qt) (5) 安定に静止した状態で、 剛体に角速度ω を与えた。 この場合の力学的エネ ルギーEの値として正しいものを選べ。 但し位置エネルギーの基準点は0と する。 (a) E = 0 (b) E=Mgh (c) E-Mgh (d) E ==Iw (e) E ==Iw+Mgh (f)=1/2Iug-Migh (6) 前問の初期条件の下で、 剛体が1回転するために必要な角速度wo の最小値と して正しいものを選べ。 (a) 0 (b) √20 (c) 2Ω (d) 4Ω (7) 回転軸の位置、 すなわちんの値を変化 させたときの慣性モーメントIの変化を 表すグラフとして正しいものを選べ。 -h A" (b) $+) (d) ・h

回答募集中 回答数: 0