学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1
工学 大学生・専門学校生・社会人

(4)の解き方が分かりません。

【3】(機械設計技術者試験 3級) 下図に示すように、1本の軟鋼製棒材 PR が一端を剛体壁にRでピン結合され、他端をPで 剛体棒OQにピン結合されている。 OP および OR の長さをℓ=1.4mとし、軟鋼製棒材 PR の横断面積をA=1.2cm² とする。 また、壁OR (y軸)とOQ(x軸)とのなす角は90℃とする。 点Qに荷重 W = 15kNが作用したとき次の設問 (1)~(4) に答えよ。 R [数値群] 単位: GPa 180 l [数式群〕 W 2 (1)軟鋼の縦弾性係数E として最も近い値を下記の 〔数値群〕から選び、 その番号を解答 用紙の解答欄 【A】 にマークせよ。 [数式群〕 3ℓ 2 We 2AE ② 106 (2) 軟鋼製棒材 PR に作用する張力を求めるための式で正しいものを下記の 〔数式群〕か ら選び、その番号を解答用紙の解答欄 【B】 にマークせよ。 W 3 [数値群〕 単位:mm ① 3.4 ③ 150 We √3AE W W √2 ② 5.4 4 206 X (3) 軟鋼製棒材 PR の伸びを求めるための式で正しいものを下記の 〔数式群〕 から選び、 その番号を解答用紙の解答欄 【C】 にマークせよ。 3 6.5 √3W √2 √2We 3We AE AE ⑤ 240 ④8.3 (5) (4) 点Qy 軸方向変位fy を計算し, その答に最も近い値を下記の 〔数値群〕から選び、 その番号を解答用紙の解答欄 【D】 にマークせよ。 3 W 2 3 We AE 59.4

回答募集中 回答数: 0