学年

教科

質問の種類

数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
経営経済学 大学生・専門学校生・社会人

問の1と2がわからないので教えていただきたいです。 ミクロ経済学の範囲です

問1.ある1種類の財の市場の部分均衡モデルを考える. 財の価格を p, 需要量を za と書くとき, 0p 100 を満たす 価格 p について (1) が成り立つと仮定する. また,この市場において財1単位を供給するために生産者が必要な限界費用は3で一定と 仮定し, 固定費用はないものとする.また, この財の生産量1単位当たり2単位の消費者余剰が減少すると仮定す る. この部分均衡モデルについて, 次の設問に答えよ。 ただし計算過程なども記述すること. Id=200-2p (1) この市場が完全競争市場の場合の均衡供給量, 均衡価格, 社会的余剰をそれぞれ求めよ. (2) 完全競争の場合に社会的に望ましい配分を実現するために必要なピグー税率を求めよ. (3) この市場が独占市場の場合の均衡供給量, 均衡価格, 社会的余剰をそれぞれ求めよ. (4) 独占の場合に社会的に望ましい配分を実現するために必要なピグー税率を求めよ. 問2. 複数期間を生きる家計の費額 貯蓄額の決定について,次の設問にそれぞれ答えよ. この問題では導出過程なども 記述すること. (1) 「第1期」と 「第2期」 の2期間を生きる家計の消費額・貯蓄額の決定を考える. 第1期の所得が 0, 第2 期の所得が300, 利子率が 10% と仮定する. 第t期の消費額をπt で表し, この家計の効用関数を u(x1, 2) = logx1+8log 2 (2) で表されると仮定する (ただし0<81) このとき, この家計の最適消費計画 (zi, i) を求めよ. (2) 「第1期」と 「第2期」 と 「第3期」 の3期間を生きる家計の消費額・貯蓄額の決定を考える. 利子率をrと仮 定する. 第期の消費額を It, 所得を m で表すとき, この家計の予算制約式を求めよ. ただし導出過程に おいて, 第1期の貯蓄額を 81, 第2期の貯蓄額を 82 と表すこと (なお予算制約式はT1,T2,T3, m1,m2,m,r の7つの文字で表すことができる). 問3. 政府はなぜ独占を規制する必要があるのか. 「厚生経済学の第1 基本定理」 の観点から論ぜよ.

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします。

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人(AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k (1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人 (k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率 市は二項分 れ、 平均 \(np\), 分散\(np (1-p)\) です。 心極限定理からnが十分 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差(\(\sigma\)), 平均 (\(\mu\)) ●1シグマ範囲 \ (\mu\sigma \le X \le \mu + \sigma\) 確率68.3% ■2シグマ範囲 \(\mu - 2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率 99.7% • \(\mu -1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です 3 a a 9 これを使うと、真の得票率Rは95%の確率で \[ r - 1.96 \sqrt(\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)}{n}} \] に含まれると計算できます (詳しい計算は省略します)。 大きい時、 1 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

5つ問題があります。解答がわかる方お願いします

8 課題 以下の内容を読み進めて、5つの問題に答えてください。 計算の際は、電卓やRを使っていただいて構いません。 ある選挙において, 候補者は二人 (AさんとBさんとします) で, 投票者の全員がどちらかに投票しているとします。 話 を聞いた人をn, そのうちAさんに投票する人をk, Aさんの得票率をRとすると,以下のような確率モデルが書けます。 \[ P(X=k) = 0_n C_k R^k(1-R)^{n-k} \] 1. ここから 得票率Rが50%の時, 10人に話を聞いて (n=10), A投票する人が0人(k=0) という場合が起こる確率を求 めてください。 2.Rとnは同じでAに投票する人が10人の時の確率を求めてください。 3. Rとnは同じでAに投票する人が5人の時の確率を求めてください。 上記の確率分布は二項分布と呼ばれ、平均 \(np\), 分散 \ (np (1-p)\) です。 中心極限定理からnが十分に大きい時, 正規 分布に従うことがわかっています。 正規分布は以下のように範囲ごとに確率が決まっていま す。 ・標準偏差 (\(\sigma\)) 平均 (\(\mu\)) 1シグマ範囲 \(\mu\sigma \le X \le \mu + \sigma\) 確率68.3% 2シグマ範囲 \ (\mu-2\sigma \le X \le \mu + 2\sigma\) 確率 95.4% 3シグマ範囲 \ (\mu-3\sigma \le X \le \mu + 3\sigma\) 確率99.7% • \(\mu - 1.96\sigma \le X \le \mu +1.96\sigma\) の 範囲が確率95%です J 3 a 8 これを使うと、真の得票率Rは95%の確率で \[r-1.96 \sqrt{\frac{r(1-r)}{n}}\le R \ler + 1.96\sqrt {\frac{r(1-r)){n}} \] に含まれると計算できます (詳しい計算は省略します)。 4.今,500人に出口調査をして、 Aの得票率が58%だったとします。 この時、真の得票率Rはどんな範囲に入ります か? 5. この計算結果から、 選挙の結果について言えることはなんですか?

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

統計学の確率密度関数の問題です。 2枚目の資料を参考にして解いていたのですが、難しかったのでどなたか詳しく教えていただくとありがたいです。

問3AさんとBさんが以下でルールが定められたゲームをする。 (ルール 1) 表に 1,裏に0と書かれた1枚のコインを, AさんとBさんがそれぞれ 2回ずつ投げる。 (ルール2) A さんの投げたコインに書かれた数を足し, その値を n とする。同様に Bさんの投げたコインに書かれた数の和も n とする。 (ルール3) -1,0,1と書かれたカードが何枚かあり、2つ束 aとbになっている。A さんは束 a から na枚のカードを引き, Bさんは束b からnB枚のカードを引く。 た だし, 2回引く場合は1枚目のカードをもとに戻してから再度引くこととする。 (補 足1も参照) (ルール4) (ルール3) におけるカードの数の積をそれぞれX,Y と書くことにする。 例えば、Aさんが2枚のカードを引き, その数が 1と1だとしたら, X = -1x1 = -1 である。 また,Bさんが1枚のカードを引き, その数が1だとしたら, Y=1とす る。(補足2も参照) そして,この数X, Y の大きい方を勝者とする。 (補足1) ルール3における束 a と束bにあるカードを引く確率はそれぞれ次で与え られているものとする。 束\数 -1 0 1 1/4 1/2 1/4 1/6 1/2 1/3 a b (補足2) A さんが1枚もカードを引かない場合, X = 0 と定義する。 同様に, B さん においてもカードを引かない場合は Y = 0 とする。 X, Y に対する同時確率密度関数をh(x,y) と書くとき, 次の問いに答えよ。 (1) n=2のときに X = 1 となる確率を求めよ。 (2) (1,-1) を求めよ。 (3) P(X = 1,Y≠0) を求めよ。 (4) AさんとBさんが引き分ける確率を求めよ。 (5) AさんがBさんに勝つ確率を求めよ。 (6) E[X] を求めよ。 (7) E[Y] を求めよ。 (8) X,Y の共分散 C' [X, Y] を求めよ。 (9) V[4X + 12Y ] を求めよ。

回答募集中 回答数: 0