学年

教科

質問の種類

数学 大学生・専門学校生・社会人

増減表についてです。 赤枠で囲んだ部分のプラスマイナスを判定する良い方法を教えていただきたいです。 できれば簡単な方法でお願いします🤲

2 第1章 1変数の微分積分 例題1 (関数のグラフ, 数列) x を非負の実数,r0r<1 を満たす実数とし, 関数f(x) を f(x)=xr* と定義する。 このとき、 以下の問いに答えよ。 df (1) f(x) の導関数 および第2次導関数 dx d2f dx2 を求めよ。 (2) f(x)の増減表を書き、関数y=f(x)のグラフの概形を描け。 (3) n を正の整数とし, 数列 {a} の一般項を an=f(n-1) により定義 する。このとき,初項から第n項までの和を求めよ。 <東北大学工学部〉 ◆アドバイス! (ax)' = a *loga 証明は簡単! 解答 (1) f(x)=xr* より f'(x)=1·r*+x.r*logr= (xlogr+1)r* ・〔答〕 公式: また f" (x) = logror*+(x logr+1)*logr = logr(xlogr+2)r* ・〔答〕 (2) f'(x) = (xlogr+1)*= 0 とすると 1 x= (>0) logr f" (x) = logr(xlogr+2)*=0 とすると x=- 2 logr (> logr よって, 増減および凹凸は次のようになる。 x f'(x) f" (x) 1 2 (+8) logr logr + 0 - 0 + y=α とおくと logy = loga =x loga 両辺を微分すると y y'=loga ..y'=aloga f" (x) 凹凸: f" (x) ・f'(x) の変化 f" (x) > 0 接線の傾き ⇒接線の傾きが増加 グラフは下に凸 y=f(x) したがって (3) an= k=1 この S= SS rs= 2 f(x) 0 rlogr logr 2 2r logr logr (0)

解決済み 回答数: 2
数学 大学生・専門学校生・社会人

青チャートの練習問題43についてです。 自分は2枚目の答案のように考えたのですが、答えがあいません。間違いを教えてほしいです。

Vim B組 : 男子4人, 女子1人 練習 2つの組 A,Bがあって,各組は次のように構成されている。 ② 43 A組: 男子2人, 女子3人; この2つの組を合わせた合計10人の生徒から任意に3人の委員を選ぶとき (1) 3人の委員の中にいずれの組の女子生徒も含まれる確率を求めよ。 (2) 3人の委員がB組の生徒だけになるか, または男子生徒だけになる場合の確率を求めよ。 ならま! (1) B組の女子生徒1人は,必ず含まれるから、 次の場合が考え られる。 [1] A組の女子生徒2人が含まれる場合 ← [2] の場合 [2] A組の女子生徒1人が含まれる場合 事象 [1],[2] は互いに排反であるから,求める確率はAの女子3人から11 3C3C1×6C1_ + 30 3 18 7 A,Bの男子6人から tx 1人を選ぶ 。 10 C3 10C3 120 120 40 (2)3人の委員が, B組の生徒だけになるという事象を E, 男子 生徒だけになるという事象をFとすると 5C3 P(E)= P(F)= 10C3' よって, 求める確率は + 人の生徒から任意! 6C3 10C3' 13 60 P(EUF)=P(E)+P(F)-P(E∩F) 10 20 + 120 120 - 4 120 08=5do P(EnF)= 4C3 = 10C388 10C30 ) SIME÷8+8= TE 個以 [1] ←ENFはB組の男子 人から3人を選ぶという 象。 ←直ちに約分しない方が 後の計算がらく。 [2] しか 練 ③ 4

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

【ε-δ論法_連続性の証明】 参考書内の演習問題についてです。 以下①~③の3点教えてください。 ▼画像の赤枠について ・①なぜ|x-1|²がδ²に変化するのでしょうか? ・②δ² + 4δ - ε = 0がなぜδ = -2±√(4+ε)になるのでしょうか? ... 続きを読む

lim∫(x)=f(1) を示すための - 論法は次の通りだ。 x→1 > 0, 80s.t. 0<x-1|<8⇒\f(x) f(1)| <e 解答&解説 Yɛ>0, ³8>0 s.t. 0<|x-1|<8⇒\ƒ(x) −ƒ(1)|<ɛ (*) このとき, lim f(x)=f(1) となって, f(x)はx=1で連続と言える。 ナ 正の数』をどんなに小さくしても、 ある正の数 が存在し, 0<x-1|<8 ならば、 || (x) - f(1) | <e となるとき, limf(x)=f(1) が成り立つ。 連続条件 よって, (*)が成り立つことを示せばよい。 0<|x-1|<8のとき, |f(x) f(1)|=|x'+2x-3|=|(x-1)(x+3)| = |(x−1){(x−1)+4}| =|x-1+4|x-1|- < 82+48 1²+2+1=3 公式: ||A+B|≦|A|+|B|| を使った! + ヒント! が成り立つことな 解答&解説 Y>0, ³8 f(x) f(1) | <82+48 < g をみたす正の数 8 の存在を 示せばよい。 82 +48g < 0 をみたす の範囲をで表す。 このとき, lim よって, (* 0<|x-2 ( ':' |x-1|<8) ゆえに,正の数がどんなに小さな値をとっても, 8' +48 - <0 をみたす正の 数δ が存在することを示せばよい。 この不等式を解いて、 -2-√4+ <8<-2+√4+8 百 8 の2次方程式: 82+48-8 = 0 の解δ=-2±√4+6 これを使った! lg(x よって,どんなに小さな正の数が与えられても, 8 <-2+v4+c をみたす正 の数 8 が存在するので, (*)は成り立つ。 これで, f(x) が x=1で連続であることが示された。 … (終) W

解決済み 回答数: 1