学年

教科

質問の種類

数学 大学生・専門学校生・社会人

問題1.3教えて頂きたいです。

4 第1章 術の 問題1.3 0でない整数 a,6,cに対して, 次が成り立つことを示せ。 1.2 約数と倍数 (1)a|bかつ6|a → a=D±6. まず、約数と倍数の定義の復習から始めよう。 (2) a|bかつ6|c → a|c. (3) a|b → ac| bc. 定義1.1 整数a,6に対して、6 = acとなる整数cが存在するとき、 「aはbを割り切る」または 「bはaで割り切れる」 と言い。 a|bと表す。また、aをもの約数 (divisor) と呼び, bをaの 倍数(multiple)と呼ぶ. 一方, aが6を割り切らないときは, atbと表す。 定義1.4 a1,…, an を整数とする。 (1) a1, ,an のすべてを割り切る整数を a1, an の公約数 と呼ぶ、また,最大公約数 GCD(a1,… … , an) を次で定義 する。 * あるiに対してa; +0であるとき, a1,……Qn の公約 数の中で最大のものを GCD(a1,.….,an)とする。 cd 単に約数や倍数と言うときは負の整数も考えていることに注意す る。例えば,6の約数は±1, ±2, ±3, ±6の8個である.ESYe ●GCD(0, ,0) 3D0. 特に,整数 a,bに対して GCD(a,6) = 1 であるとき, a ともは互いに素であると言う。 命題1.2 (1)任意の整数aに対し, ±1 と±aはaの約数である。 (2) 1の約数は+1の二つのみである。 (3) 任意の整数は0の約数であり, 0の倍数は0のみである。 (2) a1, ,a, のすべてで割り切れる整数を a1, an の公倍 数と呼ぶ、また, 最小公倍数 LCM(aj, . ., an) を次で定 の 義する。 [証明明(1) e== +1 とおくと,e.ea=D aであるから, eと eaは *すべてのiに対して a; + 0であるとき, a1,, an の aの約数である。 る正の公倍数の中で最小のものを LCM(a1,.., an) とす 会 (2) aを1の約数とし, ac=1をみたす整数cを取れば、 る。 上い * あるiに対して a;=0であるとき, LCM(a1, .… , an)=0. 1= {ac| = |a||e| >_a|>1. 従って、a = 1, 即ち, a=±1 である。 (3) 任意の整数aに対してa-0=0であること(命題 8.3(1) を 参照)から(3) が従う。 (agad+ ( + + キ ロ 5) GCD はgreatest common divisor の略。 6) LCM は 1east common multiple の略。

未解決 回答数: 1
数学 大学生・専門学校生・社会人

統計学の偏相関係数について自分の解釈があっているかの確認をしたいのですが、 こればかりは自力ではできないので確認をお願いしたいです。 (画像は参考にした教科書の内容です。ファイルサイズの問題で必要な情報をすべては載せられませんが一応貼ります。) この教科書の内容は ある人... 続きを読む

Gのデータに対して、yおよびxを戦りの像数から下引する次のような る8,備相関係数 のデータに対して,yおよびえを吸りの象数から下刊する次のような S くうか考えられ,それらの影響も限形的であれば、上の1次式のモデルの愛 SyS」 (間題A1.6)。 親がふえるこになる。また,もしこれらの変のうち採力国)が2次関数的 に移響する可能性がある場合には、当のほかにx=という4満日の変数 を予デルに加えておけば、 2次開数的な影響も上のような線格デルにより 分析ることができる。 コーつの重国帰をデルを考える。 -ッ pe ただし、 Sy S Sy S エ-dx p+る。 -のとき、最小2堀法によって求めた重回帰式は次のょうになる。 S, S1 S12 S,p いま去6のように1つの目的変数とp個の説明変数光認を に n個のデータ(数値)が与えられたとしよう. S1y S Sg Sp S= たたし。 表6 重回帰分析の場合のアータ 22 1 帰分析法 S S 日的変哉 明 数 S Sp Sp"Sp S. S 81式のいかをyおよびからあ,為,Xoの回帰が消去されたときの 偏相関係数(partial correlation coefficient)という。 テータ号 そしてS,は行列式Sの1行」列の余因了(行」列の要素を取り除いて作。 Sは式のSの2行2列2)余国子からさらに1行1列の余因子をと 1 『1 『1 T」 ったもの。 S はSの2行2列の余囚子からさらに1行+1引の余因子をと 2 エ以 た行列式に(一1}* をかけたもの)。 | 式からわかるように00式で小される偏相関係数は(a,る,…,ズ)の影響 を除いたyととの相関係数と考えることができる。同様にしてyとxj- っかもめ。 1,2,p)の間の偏相関係数を定識することができる。 また。式に小す行列式Sとその余因子を用いると、ル は次のよう! S , S. も同様に考える。 エ J= (-arュー+) , =(ddエ み) も書ける。(町E A1.7)。 Sie VS」Sa 51と同様にズ,海。, y からyの値を子測するとき、,た。, とりの 関係を示す一つの数式モデルを設定しなければならない、この数式モデル(予 第1式)を11のように与える,必は- , -…, e だけでは説明しきれない部 分の予測誤差を表す。 『122.p=ー こおくとき、変数とpの単相相関係数は次のように書ける。 S Sa, Saは行列式Sの1行1列, 2行2列,1行2列の余因子 去8に示すデータで、yおよびから,石のの国帰が消去されした 5aト ただし、 『121 -ー -4十aエ,サ角約」十, +山i-6 この式を、線形重回帰モデル(linear multiple regression model} と呼ぶ中 * Sas Ss 例7。 ただ。 ときの偏相関係数()を求めよ。 [解] 例6の解答の中に示す行列式Sと式より 回滑の場合(x,平面上のヵ個の点の集まりドに直線をあてはめたが、重回帰 1、 ( , Spー -1 場合には(, , y)の(ゆ+1)次元空間での の点の集まりに対してき次 S』 VS」S。 元超平面 S--(-は)(カー)。 『yト23- -6.941×10° V6171×10×2.011×10 0.623 をあてはめ、それによって説明変数の他x,あ から目的変数の値 を予測する。このときの誤差は式から去?のように表される。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

有識者の方解説お願いしたいです。

曲面のパラメータ表示 p:U→ R° (p e C®(U)を与え,座標曲面 S= 9(U) を考える.また,曲線c= c(s) :I→ U (ce C®(I)) を考え, 7(5):= (poc)(s) : I→Sを測地線とする.このとき次の問に答えよ。 (1) (s) の速度ベクトルの大きさ |会(s)|| は, dy = Const for Vt E I ds を満たすことを示せ、ここで,const とは定数 (constant) の略記号のことで ある。 注:したがって,パラメータ sは, yの弧長パラメータの定数倍となる。 (2) パラメータ変換s= {(t) (t e Ii) を行うと,曲線(t) := (E(t)) は,あ る関数 p(t) e Co (ī) が存在して, ds (()) = p()() for tei T dy dt を満たすことを示せ、ここで(…)" は,(…)のS-接成分を表す。これを座 標曲面Sのパラメータ表示を用いた方程式で表すと, dck ( (%3D 1,2) for teI dPck dc dei -(t) =D p(t). dt? dt dt dt を満たすことと同値である.(式(1.1), (1.2) のどちらを示してもよい.) 注:測地線y=(s) は, 弧長パラメータの定数倍を用いて求められるが,上 記の(1)より,式(1.1) または式(1.2) を測地線の定義としてもよいことが分 かる。ただしこの場合,(t) のパラメータtは,もはや一般に弧長パラメー タの定数倍としては与えられない.また式 (1.1) は,「測地線とは,座標曲面 S上の加速度が速度に各点で比例している曲線」とも解釈出来ることを表し ている。

解決済み 回答数: 1
化学 大学生・専門学校生・社会人

熱力学について質問です。 問題文の一定の外圧1.00atmをどう扱ったら良いかよく分かりません。自分でとりあえず解いてみたんですが合ってる自信あまりないです。もし分かる方いらっしゃいましたら、ご教授していただけませんか?🙇‍♂️

Problem 2 A sample consisting of 1.00 mol of perfect gas molecules at 300 K is expanded isothermally from initial pressure of 3.00 atm of a final pressure of 1.00 atm against a constant external pressure of 1.00 atm. Determine the values of q, w, AU, AH, AS, ASsur, and AStotal. 300Kにある完全気体 1.00mol の試料が、 温度一定で始めの圧力 3.00 atm から終わりの圧 カ 1.00 atm まで、一定の外圧 1.00 atm に抗して、 膨張する。 この過程に対して、9, w, AU,AH, AS, AS r, ASiosal を求めよ。 管品可運勝張より、Tが喫化しないためるリ=D 始めの体様をV終わりの体殊をソュとおくと. V, = 8.314× 300 スH- AU + PAV 1660 [コ] 1660 8.21×(o°[m] AS = = 5.53 [h] 300 ニ 3×1, 013 × /D" Vz = 8.314x300 1.013× [0 外界が理た熱置はdisur = -AHよ) = 0.0276 [m] ASsur- 「desur T 1660 300-5.53[7h] Pdv = -1.013 x /0°x (0.0246- 8.21Y16') - こ M AStotal こ AS + ASU- = -1660 LJ] AV= 9+ W より 1 - -w- 1660[5] 0 Problem 3 Calculate the change in the molar entropy at 1 atm when a solid ethanol at 159 K of the melting point changes

解決済み 回答数: 1