学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

解説して欲しいです。

当社の備品に関する次の [資料] にもとづいて、以下の各問に答えなさい。なお、会計期間は1年(決算日:3月31日) であり、期中に取得した有形固定資産に関しては年間の減価償却費を月割りにて計算する。 [資料] 1. 備品に関する事項 X5年4月1日 備品甲 (取得原価: ¥160,000)および備品乙(取得原価: ¥180,000)を取得し、 代金は小切手を振出 して支払った。 X5年10月1日 備品丙 (取得原価: ¥120,000) を取得し、 代金は小切手を振出して支払った。 X6年4月1日 備品甲を¥140,000にて売却し、 代金は現金で受け取った。 X7年4月1日 備品乙の除却を行った。 なお、 備品乙の見積処分価額は¥30,000である。 2. 減価償却に関する事項 (記帳方法: 間接法、残存価額:ゼロ) 減価償却方法 耐用年数 備品甲 定額法 備品乙 定額法 備品丙 定額法 5年 8年 4年 問1 X6年3月31日) の減価償却費の総額を解答しなさい。 ×5年度(X5年4月1日~ 問2X6年度(X6年4月1日~ X7年3月31日) の4月1日における備品甲の売却益の金額を解答しなさい。 問3×6年度の減価償却費の総額を解答しなさい。 問4X6年度の備品勘定および備品減価償却累計額勘定を完成させなさい。 なお、 総勘定元帳は、 英米式決算法により締 切ることとし、摘要欄の勘定科目等は次の中から最も適当と思われるものを選び、( )の中に記号で解答するこ と。 また、 本間においては同じ語句を複数回使用してもよい。 [語群 ] ア. 前 期繰 越 イ. 備 オ. 諸 力次 品 繰 越 ウ.減価償却費 キ. 固定資産売却益 エ. 備品減価償却累計額 ク 固定資産除却損 問5×7年度(X7 年4月1日~ X8年3月31日) 4月1日における備品乙の除却損の金額を解答しなさい。 問6 上記問5につき、 備品乙の減価償却を定額法に代えて200%定率法で計算した場合の除却損の金額を解答しなさい。 [200%定率法における償却率表] 耐用年数 8年 償却率 各自算定 改定償却率 0.334 保証率 0.07909 は7月 7 有形固定資産の貸借対照表価額に関する次の文章について、 空欄に適切な用語を記入しなさい。 備品等の有形固定資産の取得原価には、原則として当該資産の引取費用等の ( 減価償却累計額を控除した価額をもって貸借対照表価額とする。 )を含め、その取得原価から

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

大学受験で、周期表はどこまで覚えた方が良いでしょうか?流石に全部覚える必要はないですか?

1 ヘリウム 4.003 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 H |2Hel 水素 1.008 Lia Bel 2 リチウム ベリリウム 6.941 9.012 典型元素 5B 6C N O F Ne 10] ホウ素 遷移元素 10.81 炭素 12.01 窒素 14.01 酸素 16.00 フッ素 ネオン 19.00 20.18 3 11.Na12Mg ナトリウム マグネシウム 22.99 24.31 13A 14S 15P 16S 17CI 19 Ar アルミニウム ケイ素 26.98 リン 硫黄 塩素 アルゴン 28.09 30.97 32.07 35.45 39.95 4 19K 20Ca 21Sc 22Ti 23V 24 Cr 25Mn 26Fe27Co 26 Ni 29Cu30Zn32Ga32Ge33As 31Se 35 Br 36Kr 39.10 カリウム カルシウム スカンジウム チタン バナジウム クロム 40.08 44.96 47.87 50.94 52.00 マンガン 20 コバルト ニッケル 54.94 55.85 58.93 58.69 63.55 65.38 69.72 鉛 ガリウム ゲルマニウム ヒ素 72.63 74.92 セレン 臭素 78.97 79.90 クリプトン 83.80 5 37Rb 39Sr 39Y 40Zr 42Nb 42 Mo 43TC 44 Ru 45 Rh 46Pd 47Ag 48Cd 49In 50Sn 51Sb52Te 531 530Xe 544 87.62 88.91 91.22 92.91 ルビジウム ストロンチウムイットリウムジルコニウム ニオブ モリブデン テクネチウムルテニウム ロジウム パラジウム 85.47 | カドミウム インジウム スズ アンチモン テルル ヨウ素 キセノン 95.95 (99) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 60 55 SCs ss Bal 57~71 72Hf 73Ta 74W 75Re 76Os 77lr 78Pt 70 Au 30Hg 81 TI 02Pb 83 Bi 34 Poss At 86 Rn 80 132 178.5 セシウムバリウム ランタノイド ハフニウム タンタル タングステン レニウム オスミウム イリジウム 白金 17.3. 180.9 183.8 192.2 金 186.2 190.2 195.1 197.0 水銀 タリウム 200.6 鉛 204.4 207.2 ビスマス ポロニウム アスタチン 209.0 ラドン (210) (210) (222) |37 Fring Ral | 89~103 104Rf 105Db 106Sg 107 Bh 108HS 100Mt 110DS 12Rg 112Cn 113Nh 114F 115MC 116 Lv 117 TS 1180g | フランシウム ラジウム アクチノイドラザホージウムドブニウム シーボーギウム ボーリウム ハッシウムマイトネリウム ダームスタチウムレントゲニウム コペルニシウム ニホニウム フレロビウム モスコビウムリバモリウム テネシン オガネソン (223) (226) (268) (271) (272) (280) (285) (293) (267) (277) (276) (281) (278) (289) (289) (293) (294) 7

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

高分子の組成比率を求める問題なのですが、講義のスライドに載せられていた求め方が一貫性が無さすぎてどう解けばいいか分かりません。 3つのうちの1番上のもののAの比率の出し方、3つのうちの1番下のもののAの比率の出し方を解説していただきたいです。 2つ目が課題なのですが、これも... 続きを読む

5・2 ビニルポリマーの立体規則性の表示法 α 置換基 B-CH₂ n-ad () ベルヌーイ 確 ad (偶数) * ベルヌーイ 確 * triad isotactic, mm (I) heterotactic, mr (H) syndiotactic,rr (S) ++ (1-P)² 2P (1-P) dyad meso, (f) racemo,(s) tetrad立体規則性により周囲の環境が異なる P (1-P) pentad mmmm mmm mmmr ||||||||-2P(1-P) mmr H2P(1-P) b rmmr |||||||||-2 P³(1-P)² rmr P(1-P)² mmrm 2P(1-P) mrm P(1-P) b mmrr | 2P(1-P) rrm 2P(1-P) rmrm |||||| 2 P³(1-P) rrr ||||(1-8) rmrr ||||||||- 2P(1-P)³ mrrm rrrm |||||||-2P(1-P) 高分子合成化学 p.103 rrrr ||||||(1-P)* A B ポリ塩化 CI ポリイソブチレン CH Ħ CH3 H CH3 ビニリデン CH₂ C C C C C C I H CI H 01 CH3 H CH3 a b C (A=91 mol %) 164H 36H 54H 200 = 54 x:Aの mol %) 76H 120H ai a 3.8 3.6 63H (A=63 mol %) M 126H 130H a₁AAAA az BAAA(AAAB) 2 6(1-x) モル分率 as BAAB bi AABA(ABAA) ✗= (100-9)/100 = 0.91 bz BABA(ABAB) bs: AABB(BBAA) b: BABB(BBAB) C₁ ABA 左の共重合体の組成比を計 ABB(BBA)算せよ cs: BBB ||233H b領域の積分値の半分はA由来で、 半分はB由来 a: az as bi ba ba b C1 C2 C3 4 2 $ (ppm) 126/2 233 63+126/2 2x 2(1-x-y) 6(1-x)+2y 1.5ppmにピークを持つBのモル分率をy とすると、 b領域のBのモル分率は (1-x-y) 図5-15 塩化ビニリデン (A) - イソブチレン (B) 共重合体ならびに両単独 重合体の1H-NMR スペクトル (60 MHz S.Cl溶液 130°C) 16

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

bの問題で、解答の最後の1行の意味が分からないので教えて欲しいです

問4 次の文章を読み, 後の問い (ab) に答えよ。 Bがコックでつながれている。 コックを閉じた状態で, 容器A には, 一酸化炭 容積が2.0Lの容器Aと, ピストン付きで容積を変化させることのできる容器 素 CO を 27℃で 1.0×10°Pa になるように封入した。また,容器 B には、容積 が 1.0L になる位置でピストンを固定した状態で,酸素 O2 を 27℃で3.0×10 Paになるように封入した。 これを状態Ⅰ とする (図3)。 b状態Iからコックを開いて, 容器Bのピストンを完全に押し込んで、容器 B内の気体をすべて容器 Aに移したのち, 再びコックを閉じた。 次に, 容器 A内の気体に点火し, COを完全に燃焼させた。 燃焼後, 温度を27℃に戻し たとき、容器 A内の圧力は何Pa になるか。 最も適当な数値を,次の①~⑥の うちから一つ選べ。 27 Pa 容器A コック 容器 B Coo O2 ピストン 1.0×105 Pa 3.0×10 Pa Joa 2.0L 1.0L 図3 状態 Iにおける容器 A, B内の様子 a 状態Ⅰから, ピストンを固定したままコックを開いて, 十分な時間放置した。 このとき、容器内の圧力は何 Pa になるか。 最も適当な数値を、次の①~⑥の うちから一つ選べ。 ただし, 容器内の温度は27℃に保たれているものとする。 26 Pa ① 1.0×105 (2) 1.7×105 ③ 2.0 × 105 2.3×105 3.0×105 ⑥ 4.0 × 105 ① 1.0×105 ④ 2.5×105 ② 1.5×105 2.0×105 3.0×105 ⑥ 3.5 × 105 -33- 20

回答募集中 回答数: 0