学年

教科

質問の種類

数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。 ③

No9 1.次の広義積分が収束するか、 しないか判定し、 収束する場合はその値を求めよ. 2. 次の広義積分を求めよ. (1) (2) (1) (2) 「 L² (3) L dx 1+22 flog x da dx log sin Ode dx vi dx 1.² √ (12-18) (2-1) 1 x² No10 1. 次の広義積分が収束するようなパラメーターsの範囲を求めよ. (1) 22 (2² + y²) dxdy (3) (1 - cos(x² - y²)) dxdy (1) 120 rdy-ydx, (2) || ( ? – xy + y)dredy 1 2 +92 >1 [0.2m]×[0.2] 2. 次の広義積分が収束するようなパラメーター αβの範囲を求めよ. drdy 1242913083 z²+y² <1 No11 1. 道 Cを時計の逆周りの円+y² = d² とするとき、 次の線積分を求めよ. (2)zdy - yda x² + y² 2. 次の線積分を計算せよ. (1) 道C を z = cos0, y = sin0,z=02, 00 とする. Jo rdx+ydy + zdz, (2) 道 C2 を原点を通らない円 (æ-1)2 + y = 4 とするとき、 rdyydx Ja x² + y² 3. 次の R2 の一次形式のうち、 完全形式となるもの、つまり関数fにより、 df の形 に表せるものを選び、 そのような関数fを一つ与えよ. (1) dy+ydz (2) (3x²+y³)dx + 3xy²dy

未解決 回答数: 0
数学 大学生・専門学校生・社会人

先生が答えをくれません。 一応自分なりの答えは出したのですが、数学(計算も)あまり得意ではなく、自身がありません。 模範解答を作成していただきたく、質問を作成させていただきました。 何卒宜しくお願い致します。

No1 1. 次の関数fが I = [a,b]上可積分であることを仮定し、積分の値ff を求めよ. (i) f(x) = x, I = [0,a] (ii) f(x) = x2, I = [0,a] (iii) f(x) = e, I = [0, a] No2 1. (二進小数) 実数 r∈ [0, 1] が 1 1 T= r = 012 +0222 +..., (ここで a1,a2,a3=0,1) と表示されるとき、 r = 0.a1a203・・・ と書いて、 これをの二進数表示という. た だし、末尾に1が続く場合は切り上げて、 0 の続く表示としておく. たとえば、 12 の二進数表示は0.1 となる. 11 ならば、 0.01 である. (1) 1/3を二進数表示せよ. No3 1. 次の二重積分の値を求めよ. (1) (2²³ +y³)dxdy, 2) 10 (ポージ) andy, (2) No4 2. 次の3重積分を求めよ. (1) [√√ (x² + y² + 2²)²drdydz, (V = {(x,y,z)|0≤x,y,z ≤1}) (V = {(x, y, z)|x² + y² + 2² <a²}) fff, z²dxdydz, J 1 +9323 1. 次の二重積分の値を求めよ. offe (2³+y³)dxdy, (2) (2² - y²)dxdy, (2) (D={(x,y)|0≤x,y≤1}) (D={(x,y)| -1≤x≤1,1≦y<2}) (D={(x,y)|0≤x,y<1}) (D={(x,y)| -1≤x≤1, 1≤y≤ 2}) 2. 次の3重積分を求めよ. (1¹) ff (2² (22+y^2 +22)2dxdydz, (V = {(x,y,z)(0 ≤x,y,z <1}) [[[³drdydz, (V = {(x, y, z) x² + y² + 2² ≤a²})

未解決 回答数: 0
物理 大学生・専門学校生・社会人

光の干渉の質問です。このような問題でmがいくつから始まるか書いていない時、どうするべきですか? また、2dm×nl=λ/2×2(m-1)の2(m-1)は2mじゃないのはなぜですか?

光 <<さび形> 2 (慶応大) いい <>:*TO* 図のように、ガラス板 A の上にガラス板Bを重ね、 その一方の端にアルミ薄膜をはさみ、 くさび形をした薄い層 POQ を作る。 ガラ ス板Bの上方からガラス板 Aに垂直に単色光を入射させた。 このとき、 上から見ると平行で等間隔の明暗のしま模様が見られた。 (1) 暗い部分のしまについて, しまの本数を左から数えることにする。 このとき、真空中での波長を入とすると, "番目のしまの位 置における薄層の厚さは,およびm とどのような関係にあるか。ただし, ガラス板 A, ガラス板Bおよび薄層物質の屈折率を,それぞれ , B およびと し,それらの大小関係が, (7) NA>n, NB>NL (イ)>>B (ウ) (ア) NA>nn のとき、 干渉条件より、 同位相のとき、弱めあう条件 2 - × 奇数 2 光路差 2dm X NL = = 2 2 偶数 ×2(m-1) 2m-2 固定端反射が 1回あるので, <-- 偶奇が入れ替わる 光路差 = 経路差 × 屈折率 ※このときかける屈折率は, 経路差が含まれる「空気の屈折 ⇔:.dm = (m-1) 2nL dm を求めよ。 の3つの場合について 薄層 (NL < NB) に反射されるので、 自由端反射 ガラス板 B ガラス板 A ガラス A(n^n) 24 y 光 OP Fdm ガラス板 B Q アルミ ガラス板 A P 薄層 アルミ (NL) ル箔 D W RE

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

【急募】 大学の一般化学(量子力学)の問題です。 波動関数とか、ハミルトニアンとか、、、 わかる問題だけでもいいので解説をお願いします🙇‍♀️🙇‍♀️

全 xce 以下の問題に答えよ。 文字の定義は授業と同じ。 (1) 水素原子における電子のハミルトニアンは,次のように表される。 H² (2 0 - (1² or) + A = - 2me ər (3) • ● Cear HA EGERSAR 0. ●(r, 0,y) = Cerがシュレディンガー方程式の解になるようにαを定め, エネルギー固有値を求めよ。 答えはボーア半径 (do AREOR² = ト) を使った表記とすること。 meez (1,0p) = Crer coseがシュレディンガー方程式の解になるようにβを定め、エネルギー固有値を求め よ。 答えはボーア半径 (a 402. m₂e² を使った表記とすること。 ・規格化定数を求めるために以下の計算を行う。 空欄 ①~③を埋めよ。 以下の問いに答えよ。 AT THE ARE ● = 1 a 1 ²sine 00 (sines) + ²in²00²)- ressin20a2 Sy2dt = fffy2r2sin0drdodyを変数分離し,各変数ごとに定積分を行う。そ に関する定積分を実行すると (1) (B)-SIEDS F 9 に関する定積分を実行すると CARTE* ONE 31011218018 積分公式Sorne-br drを使ってrに関する定積分を実行すると 従ってC=1/√32ma5 水素様原子のシュレーディンガー方程式は 1²/10 a 1 ə rasino ao (1-²2 20 (²²0). + ər arl 2m (2) 水素原子における1s軌道の波動関数は Cer/ で与えられる。 ただしは規格化定数である。 動径分 VEAU 布関数電子が原子核から距離rの球面上に存在する確率密度) の極大値を求めよ。 HOFFE HISENSE CO 2 SMERES a sino 200+ E = 4πεr 1 2² Ze² y(r,0,9). ressin2002 4πεor である (ポテンシャルエネルギーの項で, e2がZe2になっている)。 以下の問いに答えよ。 100 Jy² dr VEEBR 3 TERENGUKS GA ここで各原子 (4) H2分子の分子軌道を水素の1s原子軌道XA XBの線形結合↓ =CaX^+ CaXで近似する。 軌道の中心はそれぞれ原子核 (H+) A, B である。 1電子エネルギーの期待値は=(2) Syd_cha+Cfa + 2CACBβ (8− 1)\1 = (x1 T4² dr C+C E = で与えられる。 ただしα, βはそれぞれクーロン積分, 共鳴積分であり、重なり積分は無視している。 ERSACERO 以下の問いに答えよ。 (1) Eが最小になる条件から永年行列式を導け。 永年行列式を解いて、 結合性軌道のエネルギーを求めよ。 1 514 r' =Zrとおいてrとp(r', 0,p)を用いたシュレディンガー方程式を書け。 水素原子の規格化された原子軌道とエネルギーをそれぞれce", Enとして, 水素様原子の1s軌道 のエネルギーと規格化された波動関数を求めよ。 答えにC, α, Enを使ってよい。 C²+C² (r,0,0) = E(r,0,9) (5) 異核2原子分子 AB の分子軌道を原子軌道XA XBの線形結合 = CAXA CBXBで近似すると, 1電子工 ネルギーの期待値は Sdr_chan+Cfap+2C^CBβ TOUCU BOUCA

回答募集中 回答数: 0