学年

教科

質問の種類

物理 大学生・専門学校生・社会人

シュレーディンガー方程式の範囲です。 式を求める所までは分かったのですが、エネルギーの求め方が分かりません。 n=5です。 解き方教えてください。

こで、彼にはk= (c) /hとなり、波数とエネルギーの関係が決まる。 一方、=0での波動関数に対 する境界条件から、 C1=0が決まり、 また、æ=bでの波動関数に対する境界条件から、nを正の整数 (n=1,2,3,...) としてkb (d) が与えられる。よって、エネルギーEの解は各nに対応したとびとび の値 En をとり、その値は20 = になる。 22 En = 2m62 n² (5) 今、この解を使って、 近似的に1,3,5,7,9デカペンタエンにおける電子の状態を求めてみよう。 この 近似のもとでは、エネルギーの低い準位から順に、量子数n=(e)の軌道まで電子がつまっている。 こ の分子が光を吸収して、量子数n=(e) の軌道の電子が励起し、 量子数がひとつ大きい軌道 (節は (f) 個) に遷移するときに必要となるエネルギーは、以下の式で与えられる。 5 22 = 2m62 Ent1 - En (9)+1) n = 5 2n (6) これより、吸収する光のエネルギーを計算しeVの単位で示すと、(h) eVである。ただし、んん/(2m)、 b=12.0Å、プランク定数ん=6.63 × 10-34 Js、電子の質量m=9.11 × 10-31 kg、1 eV= 1.60 × 10-19 書くこと。 Jとする。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

3 ∠ACB=90° である直角三角形ABC と, その辺上を移動する3点 P, Q, R がある。点 P,Q,R は,次の規則に従って移動する。 • 最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P,Q,R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点Qは辺BA上を, 点R は辺 CB 上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし, 点Pは毎秒1の速さで移 動する。 点P,Q,Rは,それぞれ点 C, A, B の位置に同時刻に到達し,移動を終了 する。 (1) 図1の直角三角形ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ, S= オ 4 袋の ④る白こりし個 60° 30 A ・20 B 図 1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値, 2回だけとりうる値を,次の①~②のうちからそれぞれ1つずつ選べ。 ただし, 移動には出発点と到達点も含まれるものとする。 ⑩ 5/2 ① 4/5 ② 10/3 とりえない値 カ 1回だけとりうる値 キ 2回だけとりうる値 ク (iii) 各点が移動する間における △APQ, △BQR, △CRP の面積をそれぞれS1, S21 S3 とする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと もにどのように変化するかを答えよ。 (あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 12-1 5- ケコサシ 秒後 ス A B ・13・ 図2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(1)の(iii)がわかりません。 解説お願いします。

4袋る白こりし [3] ∠ACB=90° である直角三角形 ABC と, その辺上を移動する3点 P, Q, R がある。 点 P, Q, R は、 次の規則に従って移動する。 ・最初, 点 P,Q,R はそれぞれ点 A, B, C の位置にあり、点P, Q, R は同 時刻に移動を開始する。 ・点Pは辺 AC上を, 点 Qは辺 BA 上を, 点R は辺 CB上を,それぞれ向きを 変えることなく, 一定の速さで移動する。 ただし、点Pは毎秒1の速さで移 動する。 点P, Q, R は, それぞれ点C, A, B の位置に同時刻に到達し, 移動を終了 する。 (1) 図1の直角三角形 ABC を考える。 (i) 各点が移動を開始してから2秒後の線分 PQ の長さと APQの面積Sを求めよ。 PQ=アイウ S=エ オ 60° 30 A 20 B 図1 (ii) 各点が移動する間の線分 PR の長さとして, とりえない値, 1回だけとりうる値 2回だけとりうる値を,次の〜②のうちからそれぞれ1つずつ選べ。 ただし、 移動には出発点と到達点も含まれるものとする。 5/2 ① 4/5 ② 10/3 とりえない値 カ (iii) 各点が移動する間における △APQ, BQR, CRP の面積をそれぞれ S, S2 S, どする。 各時刻における S1, S2, S3 の間の大小関係と,その大小関係が時刻とと 1回だけとりうる値 キ 2回だけとりうる値 ク もにどのように変化するかを答えよ。(あ) (2) 直角三角形ABC の辺の長さを右の図2の ように変えたとき, △PQR の面積が12とな るのは,各点が移動を開始してから何秒後か を求めよ。 ケコ ± サシ ・秒後 ス -13- B 図2

回答募集中 回答数: 0