学年

教科

質問の種類

物理 大学生・専門学校生・社会人

1番、3番の前半、4、5が分かりません。 自分で調べながらやっているつもりなのですが、式の関係性などが全然掴めず、解けません。過程と共に教えて欲しいです。

確認問題 #01 ドブロイ波長 1.ド・ブロイ波長は、運動量p=mv の物質が持つ波 (物質波) の波長であり、 入=h/p=h/mv と表される。ここで、 hはプランク定数、mは質量、 v は速度である。従って、運動エネル ギーEの粒子についてのド・ブロイ波長はと表される。 電子について、波長入を À 単位、 運動エネルギーをV単位で表すとき、 [Å] 150.4 == と書けることを示しなさい。 プランク [E[ev] 定数は6.626×10-34 [Js]、 電子の質量は9.109 ×10-31 [kg] 1 [eV] = 1.602 × 10-19 [J]、1[Å] = 1 × 10-10 [m] とする。 2. 運動エネルギーが50eV の電子のド・ブロイ波長を求めなさい。 3. 光の粒子性を表す光量子仮説での式により、光子エネルギーE=hv と光の波長 入の関係式 がE [eV] = 1240/2 [nm] と書けることを示しなさい。 また、波長が400nmの光について 光子エネルギーをV単位で求めなさい。 4. Ni 単結晶表面での最近接原子間距離は 0.249mm である。 電子のエネルギーが100eV の とき、n (回折の次数) がいくつまでの回折スポットが出現するか述べなさい。 また、 それ ぞれの回折角度を求めなさい。 同様に、電子のエネルギーが150eVのとき、 nがいくつま での回折スポットが出現するかと、それぞれの回折角度を求めなさい。 be 101 be 入 02 d d sine₁ =λ d sin0222 5. 運動エネルギーが100eV の電子をある金属の結晶表面に対して垂直に照射したとき、 表 面の法線方向から 25.2° と 58.3° の方向に回折スポットが観測された。 これらが、 1次お よび2次の回折スポットに対応する場合、この金属の原子間距離を A単位で求めなさい。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

幾何学の問題です。 (1)~順に解いていくと思うのですが、(1)の単体分割の図示の仕方から分かりません。そのため、後半もどのように解いていけばいいか分かりません。計算問題は自分で頑張りますので、図示、説明の方のご説明よろしくお願い致します。

2. トーラス T2 の位相幾何学的な性質をホモロジー群を用いて調べる. まず, トーラス T2 を1つ穴 あきトーラスŠと円板 ID2にカットする. Š := このとき, カットラインをC: SOID2と表す。 以下の問に答えよ. (1) D2の単体分割Pを1つ図示せよ. (2) |Kp| = P を満たす単体的複体 Kp を求めよ。 ただし,単体的複体であることの確認は「単 体的複体」の定義を述べることで省略できるものとする. (3) 単体的複体 Kp の1次元ホモロジー群H1 (Kp) を定義に沿って計算せよ. (4) H1(S) を,同相変形とレトラクション, ホモロジー群の図形的意味を用いて求めよ.ただ し, 同相変形とレトラクションがわかるように, 「パラパラ漫画」の要領で, コマ送りで図 を描くこと.また, 必要に応じて, 図に説明を付けよ.尚, レトラクションについては, S の単体分割は十分細かく取ったと仮定し, “なめらかに”変形してよいものとする. (5) カットラインCはH1 (S) 上の 1-cycle として0であることを (4) の図式を用いて説明せよ. (6) 上記の問と Mayer-Vietoris の定理を用いて, トーラスT2の1次元ホモロジー群H1 (T2) を 計算せよ。 ただし、途中の計算式,並びに Mayer-Vietoris の定理をどのように適用したか を省略せずに書くこと. (7) トーラス T2の0次元ホモロジー群Ho (T2) を, ホモロジー群の図形的意味を用いて 求めよ. (8) トーラスT2の2次元ホモロジー群H2 (T2) を, ホモロジー群の図形的意味を用いて求めよ. (9) X(T2)=2-2g (T2)が成り立つことを結論付けよ. (10) 2次元球面S2 := {( ,y,z)∈R3|z2+y^+22=1}とトーラス T2は同相ではない.その 理由を、上記の問いを含む幾何学6で学んだ内容を用いて詳しく論じよ.

回答募集中 回答数: 0