学年

教科

質問の種類

数学 大学生・専門学校生・社会人

複素数の問題です。 全て解いてほしいです。 特に問題4の解説をよろしくお願いします。

問 ■複素平面と極形式 題 複素数zは:=Rez+ i Imz と書くことができ、実部 Re z をx座標、虚部 Im:をy座標に見立てることで、 ガ ウ こを2次元平面上の1点として捉えることができる。この平面を複素(数)平面ないしGauss 平面と呼ぶ。 一方、ある複素数zを、二つの実数r,e(ただしr>0に制限す る)を用いて Im ミ=ree という形で表わしたものを:の極形式表示と呼ぶ。e の逆数は -1 Im:=rin 1 で定義する。 er Imz 問[]()r= |, tan @ = が成り立つことをそれぞれ示せ。 Rez (i) 逆数の定義に基づいて (e")= e-t0 であることを示せ。 Re Rez=r このようにこの絶対値であるrは複素平面における原点(0+ 0i) から、までの距離を表わし、0は原点とこを結ぶ線分が実軸となす 角を表わす。はarg z とも書き、偏角 (argument)(物理や工学で はしばしば位相(phase))と呼ぶ。原点の周りを一周しても同じ点 に戻ってくることから、0には 2x ラジアン= 360度の整数倍の不 定性がある。また、0+0iの偏角は定義されない。 図1 複素平面。 偏角と加法定理 絶対値が1の二つの複素数 Im 21= COs # +isin @, 2= cos #,+i sin @。 を考える。ここで0,,02 は実数とする。 問 [2]() 積22 を計算し、三角関数の加法定理とオイラーの公 式を用いて極形式表示に直せ。また、同様にして商z/zz = zi の極形式表示も求めよ。(i) 21,22の複素平面における表示を図2 とする。このとき、積」みと商z/を複素平面に図示せよ。 0.5 Re -10 -0.5 0.5 21= e,22= e であったから、小間 (i) のとくに積の方の結 果から、次の基本的な指数法則が成り立つことが理解できる: 基本的な指数法則 -0.5 実数,に対してelh el = e(h+h)が成り立つ。 図2 と2の複素平面における表示。 また、小間(i) の結果から、22= e' hを掛けることで」から偏 角がだけ反時計回り方向に回り(角度が+)、2で割ることで 2」から偏角はだけ時計回り方向に回る(-)ことが納得できる。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

大門2の(2)以降が分かりません。助けてください

[2] 図は鉄道の線路を上空から見た略図である。列車は地点Sをスタート、地点Gをゴールとして走る。 地点SからBまでの区間とCからGまでの区間は直線、BからCまでの区間は半径Rの円に沿ったカーブ、直線 SBとCGのなす角度は 60度である。 列車はSからAまでの区間を一定の加速度ので加速し、その後一定の速さいで走行、 Dを通過後に一定の負 の加速度dで減速を始め、Gで停止する。 以下の問に答えなさい。 解答はすべてMKS単位(m.kg.s単位) で表しなさい。(15点満点) B A S 2R D G 間1 AとDの間を走る列車の速さは v=5.0×102 km/時であり、 AからBまでの距離は 1.8×102 km である。AからBまで走行する時間を求めよ。(3点) 問2 列車の質量を 2.0×104 kg として、区間AからDを走行する列車の運動エネルギーを求めなさい。(2 点) 問3 SからAまでの区間を列車が加速する為に 3.0分間を必要とした。列車の加速度aを求めなさい。(2 点) 間4 SからAまでの距離を求めなさい。 (2点) 間5 Aを通過した瞬間とDを通過した瞬間の列車の運動量の変化を考え、変化量の絶対値を求めよ。 (2 点) 問6 カーブ区間BからCは半径 R=100 kmの円に沿っている。このカーブ区間を曲がる時に、 列車が門の 中心に対して持つ角速度を求めよ。(2点) 間7 列車内に体重 60 kg の人が立っている。 列車がカーブ区間 BからCを通過する時、 この人に作用す る遠心力の大きさを求めよ。(2点)

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これの問2の(3)がどうアプローチすればいいのか分かりません。誰か助けてくれると嬉しいです。よろしくお願いします。

正規分布に従う乱数を 100個出力した数値群を母集団とする。その数値群は以下の表である。 19 1 -5 -2 8 24 -16 25 0 10 5 19 -14 0 4 -16 -16 -7 -6 9 -5 5 17 3 -6 -6 11 2 16 4 -3 16 5 -1 8 -9 2 12 -24 -6 2 -13 0 -3 -6 16 -16 25 8 4 4 2 9 -1 7 2 -1 -10 13 12 11 13 17 -13 3 9 -2 1 -8 -8 -5 -15 -10 14 -4 -4 8 -10 3 13 -1 11 -3 -5 -1 12 -6 -14 4 10 3 -10 0 -1 -12 4 15 -17 -9 18 又、この母集団から標本として任意に 10個の数値を抽出する操作を5回試行した。その結果は以下の表で ある。 試行1回目 試行2回目 試行3回目| 25 試行4回目 試行5回目| 25 8 -16 0 -16 -6 2 5 -9 -6 15 -2 8 24 -5 14 -4 8 -10 15 -17 0 10 9 25 8 9 -1 -2 12 0 -3 2 -13 -3 10 -4 8 -17 -9 -6 2 25 9 12 -8 8 13 18 これらの表に関し以下の問いに答えよ。尚、数値計算結果が非整数の場合は整数で近似せよ。 問1.(記述統計に関して) (1) 母集団の度数分布表及び度数分布図を作成せよ。 (2) 母集団の最頻値を求めよ。 (3) 母集団の中央値を求めよ。 (4) 母集団の平均値を求めよ。 (5) 母集団の四分位範囲を求めよ。 (6) 母集団の分散を求めよ。 (7) 母集団の標準偏差を求めよ。 (8) 母集団に外れ値は存在するか述べよ。又、存在するならば明記せよ。 (9) 数値群の絶対値と度数をそれぞれ変数とする時、相関係数を求めよ。 (10) (9) の結果から数値群の絶対値と度数にはどのような相関があるか言及せよ。 問2.(推測統計に関して) (1) 試行回目の結果として標本平均をX,とした時、各試行に対する標本平均を導出せよ。 (2) 試行;回目の結果として標本分散を V; とした時、各試行に対する標本分散を導出せよ。 (3) 母集団の推定値として有効な標本平均が試行回目の結果である時、iはいくつが妥当であるか 根拠とともに述べよ。 (4)(1) から(3) で導出した推定値を参考にモーメント母関数 Mx(t) を明記せよ。 (5) 試行回数をさらに増やした時、平均値及び分散のの期待値はどうなると期待されるか述べよ。 正規分布 N(μ,o2) のモーメント母関数は Mx(t) は以下の関数で表される。 Mx(t) = exp(ut + 2 このモーメント母関数に関して以下の間に答えよ。 問3.(確率分布の解析に関して) (1) モーメント母関数の原点まわりでの導関数が以下を満たすことを示せ。 Mx) d =L. dt (2) モーメント母関数の原点まわりでの2階導関数が以下を満たすことを示せ。 d? 2 Mx(t) It=0 ミg

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

これの問2問3ってどうやってやればいいですか?

正規分布に従う乱数を 100個出力した数値群を母集団とする。その数値群は以下の表である。 19 1 -5 -2 8 24 -16 25 0 10 5 19 -14 0 4 -16 -16 -7 -6 9 -5 5 17 3 -6 -6 11 2 16 4 -3 16 5 -1 8 -9 2 12 -24 -6 2 -13 0 -3 -6 16 -16 25 8 4 4 2 9 -1 7 2 -1 -10 13 12 11 13 17 -13 3 9 -2 1 -8 -8 -5 -15 -10 14 -4 -4 8 -10 3 13 -1 11 -3 -5 -1 12 -6 -14 4 10 3 -10 0 -1 -12 4 15 -17 -9 18 又、この母集団から標本として任意に 10個の数値を抽出する操作を5回試行した。その結果は以下の表で ある。 試行1回目 試行2回目 試行3回目| 25 試行4回目 試行5回目| 25 8 -16 0 -16 -6 2 5 -9 -6 15 -2 8 24 -5 14 -4 8 -10 15 -17 0 10 9 25 8 9 -1 -2 12 0 -3 2 -13 -3 10 -4 8 -17 -9 -6 2 25 9 12 -8 8 13 18 これらの表に関し以下の問いに答えよ。尚、数値計算結果が非整数の場合は整数で近似せよ。 問1.(記述統計に関して) (1) 母集団の度数分布表及び度数分布図を作成せよ。 (2) 母集団の最頻値を求めよ。 (3) 母集団の中央値を求めよ。 (4) 母集団の平均値を求めよ。 (5) 母集団の四分位範囲を求めよ。 (6) 母集団の分散を求めよ。 (7) 母集団の標準偏差を求めよ。 (8) 母集団に外れ値は存在するか述べよ。又、存在するならば明記せよ。 (9) 数値群の絶対値と度数をそれぞれ変数とする時、相関係数を求めよ。 (10) (9) の結果から数値群の絶対値と度数にはどのような相関があるか言及せよ。 問2.(推測統計に関して) (1) 試行回目の結果として標本平均をX,とした時、各試行に対する標本平均を導出せよ。 (2) 試行;回目の結果として標本分散を V; とした時、各試行に対する標本分散を導出せよ。 (3) 母集団の推定値として有効な標本平均が試行回目の結果である時、iはいくつが妥当であるか 根拠とともに述べよ。 (4)(1) から(3) で導出した推定値を参考にモーメント母関数 Mx(t) を明記せよ。 (5) 試行回数をさらに増やした時、平均値及び分散のの期待値はどうなると期待されるか述べよ。 正規分布 N(μ,o2) のモーメント母関数は Mx(t) は以下の関数で表される。 Mx(t) = exp(ut + 2 このモーメント母関数に関して以下の間に答えよ。 問3.(確率分布の解析に関して) (1) モーメント母関数の原点まわりでの導関数が以下を満たすことを示せ。 Mx) d =L. dt (2) モーメント母関数の原点まわりでの2階導関数が以下を満たすことを示せ。 d? 2 Mx(t) It=0 ミg

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の円運動と電流の融合問題です。 問4の答えが I=q/v、を書き換えたq/ωlsinθ となっていました。 I=q/vというのは、I=q/tの書き換えでしょうか? 自分で電流の定義「1sあたりの電荷の通過量」と速度の絶対値vが関係してくるのかなと考えてみましたが、い... 続きを読む

図のように,支点Pからつり下げた長さ 1の十分に軽い糸の先に質量m 1] で電荷q(>0) を帯びた小球をつけ, 上から見て反時計回りの等速円運 動を水平面内で行わせる。小球の円運動の中心を0とする。糸と鉛直方向の なす角を0(0°<0<90°), 重力加速度の大きさをgとして, 以下の問いに答 えよ。 問1 小球には糸の張力と重力がはたらく。その合力の大きさと向きを答え よ。 問2 小球の円運動の角速度を求めよ。 0=60° のときの糸の張力を求めよ。また,そのときの小球の力学的 エネルギーは,小球が @=0° で静止している状態からどれだけ大きいか。 問4 この小球の円運動は円電流とみなせる。糸と鉛直方向のなす角が0の とき,円運動の角速度を心として, その電流の大きさと電流が点0に作る 磁場(磁界)の強さを求めよ。電流の大きさは1周期にわたる時間平均とする。 問5-次に,同じ糸と小球を用いて, 下から鉛直上方へ(点OからPの向き)の一様な磁束密度Bの中で小球 に同様の運動をさせると, 糸と鉛直方向のなす角は 0' (0°<8'<90°), 角速度は w' であった。小球は上か ら見て反時計回りの等速円運動を水平面内で行っている。このときの磁束密度Bを求めよ。 問3

回答募集中 回答数: 0