学年

教科

質問の種類

数学 大学生・専門学校生・社会人

解析のテストです。 これの大門1が分かる方いらしたら、教えて欲しいです!

18:30 (2.1) 極限 解析学 II 中間試験 試験問題 (平成30年11月27日 (火) 3時限 実施) 注意 第1問 第2問 第3問 第4問 第5問 第6問 すべてに解答して下さい。 解答は問題ごとに解答用紙の所定の箇所に記入して下さい。 解答用紙 (両面使用) は合計3枚あります。 すべての解答用紙 (3枚) にクラス, 学籍番号、氏名を記入して提出して下さい。 白紙の解答用紙にもクラス, 学籍番 号 氏名を記入して提出して下さい。 = [第1問] 関数 g(x,y) について、以下の問いに解答せよ. (1.1) g(x,y) , 点 (12) における1次の近似多項式 P1 (x,y) は, P1(x,y) = e-2 + 4e-2(z-1)-4e-2(y-2) で与えられることを示せ . 以下, (1.1) にて求めた Pi (x,y) を f(x,y) とおく. (1.2) 点 (x,y)=(1,2) における f(x,y) の勾配 grad f (1,2) を求めよ. (13) f(x,y) の v = ($n) ∈ R2 方向の (x,y)=(1,2)における方向微分 Duf (12) を求めよ. ただし ||||=1 とする (1.4) 関数 g(x,y), f(x,y) のグラフ=g(x,y), z=f(x,y) に関して、点(x,y) = (1,2) を通る 等位曲線をそれぞれ C2, Cf とおく. Cg, Cf の方程式をそれぞれ求めよ. (15) (14) にて求めた等位曲線 C, Cf と, grad g(1,2) の概形を同一の ry平面に描け ただし、 grad g (1,2) は点 (1,2) をベクトルの始点とすること. [第2問] 次式で与えられる関数 f(x,y) について, 以下の問いに解答せよ. 22 ((x,y) / (0.0) のとき) /12+12 ((x,y)=(0.0) のとき) 中間試験 H39.pdf f(x,y)= 2 f(x, y) = 0 lim (x,y) (0.0) <x2+y2 y² (2.2) 関数 f(x,y) が (x,y)=(0,0) において連続かどうか調べよ. を調べよ. [第3問] 次式で与えられる関数f(x,y) について, 以下の問いに解答せよ. x² + y² x² + y² ((x,y) / (0.0) のとき) ((x,y) = (00) のとき) (3.1) 極限に基づく偏微分係数の定義に従って (0,0) を求めよ. (3.2) 偏導関数 f(x,y) を求めよ. … 4G 0 完了 [第4問] C2級の関数f(x,y) について以下の問いに答えよ. (4.1) f(x,y) とz= ecose, y = esine との合成関数f(ecose, esine) に対して0に関す dz d²z ある導関数 および をそれぞれ 0 の関数として求めよ. do d02 (4.2) f(x,y) とz=rcosb,y=rsin0 との合成関数z= f(rcos0,rsine) に対しての母に を,r, 0 の関数としてそれぞれ求めよ. 8²% az 関する偏導関数 および2階偏導関数 20¹ arae [第5問] 関数 f(x,y)=√1+2x-yを考える. 以下の問いに解答せよ. (5.1) 偏導関数 f(x,y), fy (x,y) を求めよ. (52) 2階偏導関数 f(x,y), fry (x,y), fuy (x,y) をそれぞれ求めよ. (5.3) 点 (x,y,z)=(1,1,f(1,-1)) における曲面z = f(x,y) の接平面の方程式を求めよ. (5.4) 点 (x,y) = (1, -1) のまわりでの f (x,y) の2次の近似多項式を求めよ. Q [第6問] 関数 f(x,y)=x^-4xy+2y² の極値を調べよ(極値とそのときの (x,y) の値を求める こと) ....

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

写真の問題3と4ですが、文字で置かれているベクトルが1次従属であるか確かめるプロセスをお願いいたします。また、問題4のような問題はどのような方法で確かめますか?

第1問 経済数学 以下の各問すべてに答えなさい。 問1. 1. 関数 f(x)=e2x を x=0で2次の項までテイラー展開しなさい。 また、その結果を 用いて el.2 の近似値を算出しなさい。 2.定積分∫fax210gxdx を計算しなさい。 ag 3、x,y,z0 のとき、関数 g(x,y,z)=x(²) の偏導関数 (x,y,z), d(x,y,z), 08 (x,y,z) をそれぞれ求めなさい。 4. 関数h(x)=-|x| が x=0で微分可能であるならばその値を示しなさい。 そうでな ければ、 微分不可能であることを示しなさい。 Y2-X 2. XX₂ TTL-1₁ X 1. 集合 V = {(x,y)=2x+y=1} が R2 の線形部分空間であるならば、そのことを 示しなさい。 線形部分空間ではないならば、 その理由を説明しなさい。 個①か国②×P GOGOY PAP 1 y=a z= b が一次従属となる条件は、 関 2. 行列 A = = [1] を対角化しなさい。 3.abeR のとき、ベクトルx= H この順番 数 f を使って a = f (b) となるときである。 f(b) をすべて求めなさい。 4.C,Dを正則なm次元正方行列、Iをm次元単位行列とする。 また、(I+CD) と (I + DC) は正則行列であるとする。 (I + CD)-1C = C(I + DC) -1 が成り立つことを確かめよ。 10- E

回答募集中 回答数: 0
生物 大学生・専門学校生・社会人

こちらの回答お願いしたいです

胸であった を構成す x10mm チ ツ ② このDNAの長さは何mmか。 (式) チ (式) 授業プリント 2章1節 遺伝情報とDNA 15本第1問 問6 下線部タに関連する次の文章中のチツに入る数値の組合せとして最も適当 なものを、 下の①~②のうちから一つ選べ。 (答) ヒトのゲノムは約30億室対からなっている。 タンパク質のアミノ酸配列を指定する部 分(以後、翻訳領域とよぶ)は、ゲノム全体のわずか1.5%程度と推定されているので、 ヒトのゲノム中の個々の遺伝子の翻訳領域の長さは、平均して 子生対だと考えら れる。また、ゲノム中では平均して約 ることになり、ゲノム上では遺伝子としてはたらく部分はとびとびにしか存在していない ことになる。 ① 2千 15万 2 2千 30万 3 4千 15万 4千 3075 その3 (5) 255 15075 チ (式) 授業プリント 2章-2節 遺伝情報の発現 問1 塩基3文字の組合せは全部何通りあるか。 (式) その1 PROD 6 2万 30075 (答) (翻訳領域)があ ごとに一つの強伝子 授業プリント 2章-2節 遺伝情報の発現 その1 問 アミノ酸 50個からなるタンパク質の種類は全部で何通りになるか。 7 150万 期末考査 5 問4 DNAのすべての塩基配列が遺伝子としてはたらいているわけではない。 ヒト の遺伝子1つが約1500塩基対からなるとすれば、ヒトのゲノムを構成する塩基 対の約何%が遺伝子としてはたらいていることになるか。 少数第2位を四捨五入し て少数第1位まで答えよ。 また、必ず計算式を示すこと。 (式) (8) 4万 300万 (答) (答) (答) 授業プリント 2章-2節 遺伝情報の発現 問2 ある生物の2本鎖DNAの総数は、2.4×10個である。また、この生物のタンバ ク質を構成するアミノ酸の平均個数は、 4.0×10²個である。 ① このDNAの1%が遺伝情報をもつ場合、 この遺伝情報に対応するアミノ酸の数は何個 か。 フーシャル+2 (式) 期末考査 問4 (答) ②このDNAは、何種類のタンパク質の遺伝情報をもつと考えられるか。 (式) (答) 合成されたmRNAの塩基配列の長さは1.7×10mmであった。 また、DNAの 10塩基対の長さが3.4 × 10mmであった。 ①このRNAを構成する塩基数は全部でいくつか。 (式) (答) ②このRNAの21文字目以降の塩基配列に基づいてタンパク質が合成されると れば、合成されるタンパク質を構成するアミノ酸は全部で何個か。 (式) (答) リードLightノートp43 56. 細胞周期と染色体 (3) ある組織の細胞を観察したところ, 間期の細胞の数と分裂期の各時期にある細胞 は, 表のようになった。 この細胞の細胞 周期が20時間とすると、間期の時間は何 時間か。 ただし、観察したすべての細胞 が細胞周期にあるものとする。 (式) 細胞数 65 前期 中期 後期 18 8 5 (答)

回答募集中 回答数: 0
生物 大学生・専門学校生・社会人

こちらの問題回答お願いしたいです

リード Light ノートp43 46. DNAの構造 ④ ある生物のDNAについて、含まれる塩基の割合を調べたところ, A, T, G,C の With うちAの割合が30% であった。 以下の問いに答えよ。 (1) T, G, Cの割合はそれぞれ何%か。 (答) T... (3) このDNAを構成する2本のヌクレオチド鎖のうち,一方のヌクレオチド鎖 (Ⅰ鎖 とする)に含まれる塩基の割合を調べたところ、 Aの割合は35%であった。次の①, ②の割合として適当なものをそれぞれ (1) の(a)~(f) から選べ。 ① もう一方のヌクレオチド鎖 (ⅡI鎖とする)に含まれる T の割合 ② Ⅰ鎖に含まれる T の割合 G・・・ (b) 2本鎖DNAにおけるGの割合 北回通塾 (c) 複製されてできた新しい2本鎖DNAにおけるTの割合 C・・・ リード Light ノートp43 64. 遺伝情報を担う物質に関する次の文章を読み、以下の問いに答えよ。 二重らせん構造を示す2本鎖DNAのそれぞれの鎖は,ヌクレオチドが多数つながった ヌクレオチド鎖でできている。このヌクレオチドは、リン酸, 糖およびアデニン(A),チ ミン (T),グアニン (G), シトシン (C) の4種類の塩基のうちのどれか1つから成り立っ ている。 (答) (2) 2本鎖DNAを構成する一方のヌクレオチド鎖をⅠ鎖 もう一方をⅡI鎖とする。I鎖, ⅡI鎖におけるAの割合がそれぞれ20%, 26%であるとき, 次の(a) ~ (d) の割合を求めよ。 (a) ⅡI鎖における T の割合 (答) ① (答) (答) (答) (答) (d) このDNA 全体がⅡI鎖を鋳型に転写された場合、 できたRNAにおける A の割合 (答) 授業プリント 2章1節 遺伝情報とDNA その3 問3 DNA2 本鎖のうち、一方をH鎖、 他方をI鎖とする。 H鎖のAが23%、 T25%、 C24%であった。 ① H鎖のGは何%か。 ②I鎖の A は何%か。 ③DNA 全体では T は何%か。 (3)

回答募集中 回答数: 0