学年

教科

質問の種類

資格 大学生・専門学校生・社会人

どうして有価証券利息から現金預金を引いた金額が、 投資有価証券になるのでしょうか。

例題9 満期保有目的の債券 その社債を発行したときの市場での 一般的な利子率のこと。 実効利子率 第5節 有価証券の期末評価 T 重要度 A 以下の資料に基づき、x1年度 (x1年4月1日~×2年3月31日) の財務諸表に計上される有価証券 利息及び投資有価証券の金額を答えなさい。 (1)x1年4月1日に社債 (額面100,000円) を95,000円で取得し、 満期保有目的の債券として保有し 原価と額面金額の差額は、金利の調整と認められるため、 償却原価法を適用する ている。 当該社債は利率年3%、 利払年2回 (3月末、9月末)、 償還期間5年である。 なお、 取得 (2) 計算上、円未満の端数については四捨五入する。 問1 償却原価法を利息法で実施した場合 (実効利子率 年4.1%) ✓チェックする!! 第10章 有価証券 2 償却原価法を定額法で実施した場合 ■解答解説 (単位:円) 問1 利息法 1. 期中仕訳 (1)x1年4月1日 (取得時) (借) 投資有価証券 002-1 (2)x1年9月30日 (利払日) (借) 現金預 金 投資有価証券 95,000 (貸)現 金預金 95,000 1,500 2 (貸)有価証券利息 4483 ※1 有価証券利息: 95,000 (取得原価) × 4.1% (実効利子率)×6ヶ月(X1.4~X1.9)/12ヶ月 1,948 2 クーポン利息 100,000 (額面金額)×3% (クーポン利率)×6ヶ月 (X1.4~X1.9)/12ヶ月=1,500 ※3 償却原価法: 448 (差額) 1,948 1 957 (3)x2年3月31日 (利払日) (借) 現金 預金 1,500 2 (貸) 有価証券利息 1,957 1 投資有価証券 4573 ※1 有価証券利息 95,000 (取得原価) +448 (償却額) | x 4.1% (実効利子率)×6ヶ月(X1.10~X2.3) 12ヶ月=1,957 ※2 クーポン利息 100,000 (額面金額)×3% (クーポン利率)×6ヶ月(X1.10~X2.3) / 12ヶ月=1,500 ※3 償却原価法: 457 (差額) 前T/B 投資有価証券 95,905 有価証券利息 3,905 後T/B 投資有価証券 95,905 有価証券利息 3,905 2. 決算整理仕訳 仕訳なし

未解決 回答数: 1
数学 大学生・専門学校生・社会人

幾何学の問題です。 (1)~順に解いていくと思うのですが、(1)の単体分割の図示の仕方から分かりません。そのため、後半もどのように解いていけばいいか分かりません。計算問題は自分で頑張りますので、図示、説明の方のご説明よろしくお願い致します。

2. トーラス T2 の位相幾何学的な性質をホモロジー群を用いて調べる. まず, トーラス T2 を1つ穴 あきトーラスŠと円板 ID2にカットする. Š := このとき, カットラインをC: SOID2と表す。 以下の問に答えよ. (1) D2の単体分割Pを1つ図示せよ. (2) |Kp| = P を満たす単体的複体 Kp を求めよ。 ただし,単体的複体であることの確認は「単 体的複体」の定義を述べることで省略できるものとする. (3) 単体的複体 Kp の1次元ホモロジー群H1 (Kp) を定義に沿って計算せよ. (4) H1(S) を,同相変形とレトラクション, ホモロジー群の図形的意味を用いて求めよ.ただ し, 同相変形とレトラクションがわかるように, 「パラパラ漫画」の要領で, コマ送りで図 を描くこと.また, 必要に応じて, 図に説明を付けよ.尚, レトラクションについては, S の単体分割は十分細かく取ったと仮定し, “なめらかに”変形してよいものとする. (5) カットラインCはH1 (S) 上の 1-cycle として0であることを (4) の図式を用いて説明せよ. (6) 上記の問と Mayer-Vietoris の定理を用いて, トーラスT2の1次元ホモロジー群H1 (T2) を 計算せよ。 ただし、途中の計算式,並びに Mayer-Vietoris の定理をどのように適用したか を省略せずに書くこと. (7) トーラス T2の0次元ホモロジー群Ho (T2) を, ホモロジー群の図形的意味を用いて 求めよ. (8) トーラスT2の2次元ホモロジー群H2 (T2) を, ホモロジー群の図形的意味を用いて求めよ. (9) X(T2)=2-2g (T2)が成り立つことを結論付けよ. (10) 2次元球面S2 := {( ,y,z)∈R3|z2+y^+22=1}とトーラス T2は同相ではない.その 理由を、上記の問いを含む幾何学6で学んだ内容を用いて詳しく論じよ.

回答募集中 回答数: 0