学年

教科

質問の種類

物理 大学生・専門学校生・社会人

物理の問題です。 解説してもらいたいのですが、なぜ積分をするのですか?高校物理取ってなくて分からないところだらけなのです。解説お願いします。

[1] 図のように、斜面方向下向きにX軸 (単位:m) をとり,傾斜角0 (単位: rad) の斜面上の最下点からの距離 (単位:m) 最下点を通る基準水平面か らの高さん (単位:m) に原点Oをとる。 半径R (単位:m), 質量M (単位: kg) の剛体球が,時刻 t0Bに点Oから初速0m/sで降下する。 重力加速度 の大きさを(単位:m/') とし, この運動において、力学的エネルギー保存則 が成り立つものとする。 このとき, (1)~(6)に答えよ。 X 剛体球 h まず,剛体球と斜面との間の摩擦が無視できる場合について考える。 (1) 剛体球と斜面との間の摩擦が無視できて、剛体球が回転することなく滑って斜面上を降下するとき、この剛体球の並進運動 の運動方程式を書け。 (4) 斜面上を滑ることなく転がる剛体球の角速度の大きさ : w= であることを説明せよ。 次に, 球と斜面との間の摩擦が無視できない場合について考える。 剛体球と斜面との間の摩擦が無視できないとき,剛体球は 滑ることなく転がって斜面上を降下した。 1=MR² -MR2 であることを示せ。 (2) 半径R (単位:m) 質量M (単位:kg) の剛体球の慣性モーメントⅠ (単位:kg'm') が, I = ただし, 半径r (単位:m), 質量m (単位:kg) の薄い球殻の慣性モーメントが -mr² (単位:kg・m) であること, 半径r (単位:m) の球の表面積が 4πr2 (単位:m') であり、体積が -TTT" (単位:m) であることを、 それぞれ用いてよい。 3 4 3 (3) 剛体球が点Oで静止している状態からの剛体球の質量中心Cの周りの回転角をゆ (単位 : rad) とする。 剛体球と斜面との間 の摩擦力の大きさを F (単位:N) として,この剛体球の運動方程式を並進運動と回転運動に分けてそれぞれ書け。 de のとき、この剛体球の斜面方向の速さ : v=Rw (単位:m/s) dt (5) (3)の並進運動の運動方程式と回転運動の運動方程式を連立して, この剛体球の斜面方向の並進運動の加速度の大きさが gsin0 (単位:m/s) で与えられることを示せ。 5 (6) この剛体球が斜面上を滑ることなく転がるとき, 最下点におけるこの剛体球の斜面方向の並進運動の速さ V(単位:m/s) が V = -gh (単位:m/s) で与えられることを示せ。 10 7

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解析のテストです。 これの大門1が分かる方いらしたら、教えて欲しいです!

18:30 (2.1) 極限 解析学 II 中間試験 試験問題 (平成30年11月27日 (火) 3時限 実施) 注意 第1問 第2問 第3問 第4問 第5問 第6問 すべてに解答して下さい。 解答は問題ごとに解答用紙の所定の箇所に記入して下さい。 解答用紙 (両面使用) は合計3枚あります。 すべての解答用紙 (3枚) にクラス, 学籍番号、氏名を記入して提出して下さい。 白紙の解答用紙にもクラス, 学籍番 号 氏名を記入して提出して下さい。 = [第1問] 関数 g(x,y) について、以下の問いに解答せよ. (1.1) g(x,y) , 点 (12) における1次の近似多項式 P1 (x,y) は, P1(x,y) = e-2 + 4e-2(z-1)-4e-2(y-2) で与えられることを示せ . 以下, (1.1) にて求めた Pi (x,y) を f(x,y) とおく. (1.2) 点 (x,y)=(1,2) における f(x,y) の勾配 grad f (1,2) を求めよ. (13) f(x,y) の v = ($n) ∈ R2 方向の (x,y)=(1,2)における方向微分 Duf (12) を求めよ. ただし ||||=1 とする (1.4) 関数 g(x,y), f(x,y) のグラフ=g(x,y), z=f(x,y) に関して、点(x,y) = (1,2) を通る 等位曲線をそれぞれ C2, Cf とおく. Cg, Cf の方程式をそれぞれ求めよ. (15) (14) にて求めた等位曲線 C, Cf と, grad g(1,2) の概形を同一の ry平面に描け ただし、 grad g (1,2) は点 (1,2) をベクトルの始点とすること. [第2問] 次式で与えられる関数 f(x,y) について, 以下の問いに解答せよ. 22 ((x,y) / (0.0) のとき) /12+12 ((x,y)=(0.0) のとき) 中間試験 H39.pdf f(x,y)= 2 f(x, y) = 0 lim (x,y) (0.0) <x2+y2 y² (2.2) 関数 f(x,y) が (x,y)=(0,0) において連続かどうか調べよ. を調べよ. [第3問] 次式で与えられる関数f(x,y) について, 以下の問いに解答せよ. x² + y² x² + y² ((x,y) / (0.0) のとき) ((x,y) = (00) のとき) (3.1) 極限に基づく偏微分係数の定義に従って (0,0) を求めよ. (3.2) 偏導関数 f(x,y) を求めよ. … 4G 0 完了 [第4問] C2級の関数f(x,y) について以下の問いに答えよ. (4.1) f(x,y) とz= ecose, y = esine との合成関数f(ecose, esine) に対して0に関す dz d²z ある導関数 および をそれぞれ 0 の関数として求めよ. do d02 (4.2) f(x,y) とz=rcosb,y=rsin0 との合成関数z= f(rcos0,rsine) に対しての母に を,r, 0 の関数としてそれぞれ求めよ. 8²% az 関する偏導関数 および2階偏導関数 20¹ arae [第5問] 関数 f(x,y)=√1+2x-yを考える. 以下の問いに解答せよ. (5.1) 偏導関数 f(x,y), fy (x,y) を求めよ. (52) 2階偏導関数 f(x,y), fry (x,y), fuy (x,y) をそれぞれ求めよ. (5.3) 点 (x,y,z)=(1,1,f(1,-1)) における曲面z = f(x,y) の接平面の方程式を求めよ. (5.4) 点 (x,y) = (1, -1) のまわりでの f (x,y) の2次の近似多項式を求めよ. Q [第6問] 関数 f(x,y)=x^-4xy+2y² の極値を調べよ(極値とそのときの (x,y) の値を求める こと) ....

回答募集中 回答数: 0