学年

教科

質問の種類

数学 大学生・専門学校生・社会人

問題11についてです。 割合の応用問題なのですが、個数の求め方が分かりません。解説にはAの青ボールを移動させても比率が変わらないことからBの赤は2×2で4になると書いてあります。なぜそうなるのでしょうか。 式のたて方から教えていただけると嬉しいです。

問題10 問題 11 割合の応用 1 100点満点のテストを3回受けた。 1回目の点数は3回のテストの合計 点の35%に相当し、3回目の点数の0.7倍であった。 最も点数が低 かったのは何回目のテストか。 2 AとBの2人に個数が31となるようにボールを分配した。 ボールは 赤、青2色あり、 赤と青の比率は4:1である。 続いて、 Aの青ボー ル2個をBの赤ボール半分と交換したところ、 Aのボールはすべて赤 となり、AとBの持っている個数の比は3:1のままであった。 この とき、ボールは全部でいくつあるか。 (DA JA -B (010 (b)0 あか あお 2 12 成分AとBを1:2で混ぜた薬Xと3:5で混ぜた薬Yを同量混ぜて薬Z を作った。 Zに含まれる成分Aの割合は何%か。 解答の%は小数点第 1位を四捨五入すること。 3 ある畑A・Bでは、それぞれりんごの品種PQRを生産している。 2つの畑でそれぞれの品種が占める割合は、 AではPが60%、 Qが 40%、BではPが50%、 Q35%、 Rが15%であった。 また総生産 量は畑Aが60%、 Bが40%である。 このとき、2つの畑のりんごPの生産量合計は総生産量の何%か。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)の考え方を教えていただきたいです。 内積0を使うのかな?という検討はつきましたが、条件で与えられているベクトルをどのように扱えばいいか分からなくなってしまいました。

第1問 R3を3次元実列ベクトル全体の集合, I 3×3 を3×3 の実行列全体の集合とする. 1, 12, 73 ∈ R3は一次独立な単位長ベクトル, 4∈R3は n1, 2, ng と平行でない単位長ベクトルとす る.また,正方行列 A, B を 4 A= - 2 B = Σnin T \\n-n i=1 とする.ここで, XT, æT はそれぞれ行列 Xの転置行列とベクトルæの転置ベクトルを表 す。 以下の問いに答えよ。 (1)Aの階数が3となるような 4 に関する条件を求めよ. (2) 3次元ユークリッド空間において以下の3つの条件を満たす4つの平面 II = {æ ∈ R3 | new - d = 0} (d は実数, i = 1, 2, 3, 4) を考える (i) A の階数は3であ る, (ii) Ω = {æ ∈R3 | new-d≥0, i = 1, 2, 3, 4} が空集合ではない, (iii) II (i = 1, 2, 3, 4)に接する球C (⊂ Ω) が存在する. このときCの中心の位置ベクト ルをベクトルuER を用いて A-1u の形で表す. d (i = 1, 2, 3, 4)を用いてuを 表せ. (3) B が正定値対称行列であることを示せ. (4)4つの平面 {æ∈R3|nex-d=0} (dは実数, i = 1, 2, 3, 4) への距離の2乗和が 最小となる点P を考える. Pの位置ベクトルをベクトルver を用いて B-1 の形 で表す. ni, di (i = 1, 2, 3, 4) を用いて”を表せ. (5)13において点 Qi (位置ベクトルをER3とする)を通りに平行な直線をんとす る(i = 1, 2, 3). 任意の点R (位置ベクトルをy∈ とする) をんに直交射影した 点を R; とする.R の位置ベクトルを行列 Wi∈ R 3×3 を用いて y - Wi(y-æž) と表 す. I∈IR 3×3 を単位行列とする. (a) と I を用いて W を表せ. (b) WWWż を示せ. = (c)平面Σ = {ER3 | afx = b} を考える (a∈3は非零ベクトル, b は実数). 点SE∑はL, Iz, 13 への距離の2乗和を最小にする点である.n1, n2, n3 が互 いに直交するとき,Sの位置ベクトルをベクトルw∈3 を用いて aa ab I - w+ T ara の形で表す.ただし, は a,bには依存しないものとする. w を Wi, πi (i = 1, 2, 3) を用いて表せ. p. 1

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(4)以降全く進めません 答えもなくて困っています どなたか解説をお願いできませんか

Oshi oshil oshi 20:28 日 oshi 前のページ shin toshin toshin ■ 4G95 toshin 次のページwhin [hin 2 図に示すように、水平面に対して傾き 30℃のなめらかな斜面とその下端から連 続する水平な床がある。 斜面上の高さんのところから質量mの物体Aを静かに 放したところ、 物体Aは斜面をすべり落ち、斜面下端Pから右側にだけ離れ た水平面上の点に置かれていたMの物体Bと最初の衝突を起こした。 こ のときのはね返り係数をe (0<e< 1), 重力加速度をg, 物体A, Bと斜面お よび床面との摩擦は無視できるものとして、 以下の問い(問1~5)に答えなさ い。ただし、 右方向を正の向きとし. <1とする。 min oshi hin 問1 物体Bと最初に衝突する直前の物体A の速度はいくらか。 g, hを用 いて答えなさい。 oshi Shin Oshi 問2 最初の衝突直後の物体A, B の速度 UAY UB はそれぞれいくらか。 g. e,m, M, hを用いて答えなさい。 hin 物体Bの質量は物体Aの質量の4倍 (M=4m) であり,e=0.5のとき, 最初 Oshiの衝突後、物体Aは左向きに進み、斜面を高さHまでのぼり,そこで向きを変え て再び斜面をすべり落ちた。 一方、物体Bは右向きに進み、 しだけ離れた位置 Q oshiにある鉛直な壁と完全弾性衝突して向きを変えた。 その後、物体Aと物体Bは再 び衝突した。 hin oshi oshi 問3 最初の衝突直後。 物体が斜面上で達する最高点の高さはいくらか。 h を用いて答えなさい。 また、 物体Aが最初の衝突から斜面上で最高点に 達するまでの時間 T, はいくらか。 g, h, lを用いて答えなさい。 min nin oshi oshi 問43で物体Aが斜面上で最高点に達してから物体Bと2回目の衝突を起 こすまでの時間 T はいくらか。 . . 1を用いて答えなさい。 結果だけで なく、 導出の過程を整理し、解答欄に記載しなさい。 min hin oshi 問5 この2回目の衝突は0点の左右どちら側で起こるか。 また。 0点との距 離Lはいくらか。 h, lを用いて答えなさい。 nin oshi min 壁 A oshi shi h Oshi < ああ 30° P MBO toshin-kakomon.com ■ nin hin hin

回答募集中 回答数: 0