学年

教科

質問の種類

数学 大学生・専門学校生・社会人

この問題の解説お願いします。計算過程もお願いします❗️

第2問 (必答問題)(配点 30) [1] 先生と花子さんは, 半径が等しい二つの円C:x+y2 = 4, C2x2+y2-8x+12=0 について話している。 二人の会話を読んで,下の問い に答えよ。 先生: C2 の中心の座標を求めてください。 花子:中心の座標は ア |です。 先生: 円 C, 上の点 (x1, y) における接線の方程式を求めてください。 です。 花子: 接線の方程式は (1) 先生は,さらに問題を花子さんに出題した。 ものを、次の①~③のうちから一つ選べ。 ⑩ x1x+yiy=2 ① x+y=2 ② x1x+yiy=4 3 x+y=4 x1 y1 X1 y1 花子: 接点の座標は カ です。 先生: よくできました。 イ 問題 円 C2の接線で, 円 C を面積の等しい二つの部分に分けるものが2本あ る。この2本の接線について,円 C2 との接点の座標を求めよ。 (3) カ に当てはまるものを,次の ⑩~⑤のうちから一つ選べ。 0 (4-√3, ±√3) ① (4-√3, ±2√3) (2) (3, ±√3) 4 (4+√3, +√3) (3) (3, ±2√3) と求まりました。 先生: よくできました。 また、 ク 0 先生これで(i) は解決しましたね。 次に (ii) を考えましょう。 太郎:y= キ としていいですから, 2次方程式 Q(x)=0 の解をα, βと して、 解と係数の関係を用いて, +β2 をk で表すことができます。 花子ということは, f(k)=²+B2+y²" とおいて, y=f(k) のグラフを考えれ ばいいですね。 先生: そうです。 太郎: ²+B2+y”のとり得る値の範囲は キ 0 テ ケ ク の解答群 に当てはまる ツ から一つずつ選べ。 ただし、 テ ① > イ ト の解答群 ① m テ a² +B² + y² ト ツ テ ウ に当 N ナニ ナニ ヌ ト に当てはまるものを、次の各解答群のうち (4+√3, ±2√3) ヌ に当てはまる数を求めよ。 まる については同じものを選んでも 4 S | 先生:では, 円 C2 上の点Q(p, 9) における円 C2 の接線の方程式は,どのよ うに考えて求めますか。 花子: 円 C2 の中心が原点に移るように円 C2 を平行移動した円が, 円 C です。 この平行移動で点Qが点Q’ に移るとすると, 円 C1 上の点Q における 円 C の接線の方程式は I となります。 このことから, 接線の方 (2) 選べ。 程式は I オ オ と求まります。 に当てはまるものを、次の各解答群のうちから一つずつ I の解答群 ⑩ (p+4)x+gy=2 ① (p-4)x+gy=2 ② (p+4)x+qy=4 ③ (p-4)x+qy=4 オ の解答群 ⑩ (p+4)(x+4)+gy = 2 ② (p-4)(x+4)+gy = 2 ④ (p+4)(x+4)+gy=4 ⑥ (p-4)(x+4)+gy=4 〔2〕 先生と太郎さんと花子さんは, 3次方程式に関する次の問題について話して いる。 三人の会話を読んで、 次のページの問いに答えよ。 問題k を実数とする。 P(x)= x³ (2k+1)x²+(3k²+7k-7)x-3k²-5k+7 とする。 (i) 3次方程式 P(x) = 0 が異なる三つの実数解をもつようなkの値の範 囲を求めよ。 (ii) k(i)で求めた値の範囲にあるときを考える。 3次方程式 P(x)=0 の 解をα, B, y とするとき ++のとり得る値の範囲を求めよ。 先生 まず, (i)から考えてください。 3次方程式 P(x)=0 が異なる二つの実数 解をもつようなんの値の範囲を求めましょう。 太郎: P キ 1=0 ですから, P(x) は x- キ で割り切れます。 P(x) キ で割ったときの商をQ(x) とし, 2次方程式 Q(x)=0 の 判別式をDとすると, 方程式 Q(x)=0 が異なる二つの実数解をもてば よいので, D ク 0 より ケ ① (p+4)(x-4)+gy = 2 ③ (p-4)(x-4)+qy=2 ⑤ (p+4)(x-4)+gy=4 ⑦ (p-4)(x-4)+gy = 4 コ セ が(i)の答えです。 | 先生 (i) の答えは (*) ではないよ。もう少し考えてください。 太郎 そうか。三つの解が異なるから, (*) の条件に Q という条件が必要でした。 花子:確かにそうですね。 じゃあ、 3次方程式 P(x)=0 が異なる三つの実数解 をもつようなkの値の範囲は ソ k. サ くんく- が正しい答えとなります。 または k. ス チ

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

高校化学・熱化学の範囲です。 この問題(写真1枚目)から、このエネルギー図(写真2枚目)を作る考え方がわかりません。 上の図が(2)で使用する図で、下の図が(3)で使用する図になります。 どちらもわかりません。

総合問題 325. 結晶とエネルギー 塩化ナトリウム NaClの結晶を 気体状態のNa原子および CI 原子にするのに必要なエ ネルギーは 624kJ/mol である。 また, 気体状態の Na 原 子を Na + に, CI 原子を CI にイオン化するときの熱量 変化は,それぞれ Na原子のイオン化エネルギー 496 kJ/mol および CI 原子の電子親和力 349kJ/mol に相当 する。 以上のデータから、 右のエネルギー図を描くこと ができる。 一方で気体状態のイオンが多量の水に溶解し たときに発生する熱量は, Na+ では 406kJ/mol, Cl- で は 361 kJ/mol である。 (1) 図中の(ア), (イ) の状態を表す適切な化学式を記して, エネルギー図を完成させよ。 なお, 化学式ではその物質の状態を A13+aq や H2O (気) のように記せ。 (2) 図中のQは何kJ になるか。 (3) Na+aq+Claq の状態をエネルギー図中に記せ。 (4) 塩化ナトリウムが水に溶解する際の溶解熱を求めよ。 また,この変化を熱化学方 程式で表せ。 (11 名古屋大 改) エネルギー Na+(気)+CI-(気) (ア) (イ) Q[kJ] 624kJ

回答募集中 回答数: 0