学年

教科

質問の種類

物理 大学生・専門学校生・社会人

高校レベルの物理の問題です。 答えは出したのですが、解答と合わなかったので最後の問題の解き方を教えてください。

空気抵抗とは空気との接触により運動を妨げようとする力のことであり、運動している物体の速さ (速さの1乗) に比例する粘性抵抗と速 さの2乗に比例する圧力抵抗がある。 雨が圧力抵抗のみを受けながら鉛直下向きに落下する様子を考える。 圧力抵抗の比例定数を重 力加速度の大きさをg [m/s²]として以下の問に答えよ。 V 問31 鉛直下向きを正として雨の加速度をa [m/s'] としたとき、 速さ [m/s]で落下している雨滴の運動方程式はどのように記述され るか。 適切なものを1つ選べ [31] ① ma = mg + kv² (2) ma=-kv (3) ma = -kv² (6) ma=mg- ・kv (7) ma = mg-kv² ⑧ ma-mg 問32 比例定数kの単位はSI単位でどのように表されるか。 適切なものを1つ選べ。 [32] ① N·m ②N・s ③kg·m ⑥ N/m ⑦ N/s ⑧kg/m ①kmg mg k ② 月 33 雨滴は地表付近では等速度運動をする。 そのときの速度 (終端速度) Pt [m/s] として適切なものはどれか。 1つ選べ。 [33] mg -1 (半径に反比例) img k 5 1 (半径の1乗に比例) ④kg's ⑨kg/s 1km g 30 (半径に関わらず一定) 4 ⑧ 0 34 圧力抵抗の比例定数kはp を空気の密度、S を物体の断面積として、以下の関係がある。 x=2/cos CpS 4 ma = kv 9 ma = mg - 12/1 (半径の平方根に反比例) ⑤m/s² ⑩ 単位無し ここで、Cは物体の形状に依存する係数であり、 球の場合はおよそ 0.5 となる。 雨滴の形状が球だとして、終端速度は雨滴の半径の何 乗に比例するか。 適切なものを1つ選べ。 [34] ⑥⑥/12 (半径の平方根に比例 62 (半径の2乗に比例) ⑤ ma=kv² 10ma = mg + kv kv²=mg V = long fals い JAL = der²tu Img_ 11 4mg erin 4mg en F√ √

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

【急募】 大学の一般化学(量子力学)の問題です。 波動関数とか、ハミルトニアンとか、、、 わかる問題だけでもいいので解説をお願いします🙇‍♀️🙇‍♀️

全 xce 以下の問題に答えよ。 文字の定義は授業と同じ。 (1) 水素原子における電子のハミルトニアンは,次のように表される。 H² (2 0 - (1² or) + A = - 2me ər (3) • ● Cear HA EGERSAR 0. ●(r, 0,y) = Cerがシュレディンガー方程式の解になるようにαを定め, エネルギー固有値を求めよ。 答えはボーア半径 (do AREOR² = ト) を使った表記とすること。 meez (1,0p) = Crer coseがシュレディンガー方程式の解になるようにβを定め、エネルギー固有値を求め よ。 答えはボーア半径 (a 402. m₂e² を使った表記とすること。 ・規格化定数を求めるために以下の計算を行う。 空欄 ①~③を埋めよ。 以下の問いに答えよ。 AT THE ARE ● = 1 a 1 ²sine 00 (sines) + ²in²00²)- ressin20a2 Sy2dt = fffy2r2sin0drdodyを変数分離し,各変数ごとに定積分を行う。そ に関する定積分を実行すると (1) (B)-SIEDS F 9 に関する定積分を実行すると CARTE* ONE 31011218018 積分公式Sorne-br drを使ってrに関する定積分を実行すると 従ってC=1/√32ma5 水素様原子のシュレーディンガー方程式は 1²/10 a 1 ə rasino ao (1-²2 20 (²²0). + ər arl 2m (2) 水素原子における1s軌道の波動関数は Cer/ で与えられる。 ただしは規格化定数である。 動径分 VEAU 布関数電子が原子核から距離rの球面上に存在する確率密度) の極大値を求めよ。 HOFFE HISENSE CO 2 SMERES a sino 200+ E = 4πεr 1 2² Ze² y(r,0,9). ressin2002 4πεor である (ポテンシャルエネルギーの項で, e2がZe2になっている)。 以下の問いに答えよ。 100 Jy² dr VEEBR 3 TERENGUKS GA ここで各原子 (4) H2分子の分子軌道を水素の1s原子軌道XA XBの線形結合↓ =CaX^+ CaXで近似する。 軌道の中心はそれぞれ原子核 (H+) A, B である。 1電子エネルギーの期待値は=(2) Syd_cha+Cfa + 2CACBβ (8− 1)\1 = (x1 T4² dr C+C E = で与えられる。 ただしα, βはそれぞれクーロン積分, 共鳴積分であり、重なり積分は無視している。 ERSACERO 以下の問いに答えよ。 (1) Eが最小になる条件から永年行列式を導け。 永年行列式を解いて、 結合性軌道のエネルギーを求めよ。 1 514 r' =Zrとおいてrとp(r', 0,p)を用いたシュレディンガー方程式を書け。 水素原子の規格化された原子軌道とエネルギーをそれぞれce", Enとして, 水素様原子の1s軌道 のエネルギーと規格化された波動関数を求めよ。 答えにC, α, Enを使ってよい。 C²+C² (r,0,0) = E(r,0,9) (5) 異核2原子分子 AB の分子軌道を原子軌道XA XBの線形結合 = CAXA CBXBで近似すると, 1電子工 ネルギーの期待値は Sdr_chan+Cfap+2C^CBβ TOUCU BOUCA

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

解き方をお願いいたします。

問1 以下の方程式について考える。 logy=5+0.2x log は自然対数を表す。 このとき、以下の空欄に、半角で、 もっとも適切な算用数字を入力しなさい。 ま た、小数点が必要な場合も半角で入力しなさい。 xが1単位増加するとき、yは 問2 以下の方程式について考える。 y=5+200logx log は自然対数を表す。このとき、以下の空欄に、半角で、 もっとも適切な算用数字を入力しなさい。 ま た、小数点が必要な場合も半角で入力しなさい。 xが1パーセント増加するとき、yは 問3 以下の方程式について考える。 xが1パーセント増加するとき、yは 問4 以下の方程式について考える。 logy=8+2logx log は自然対数を表す。このとき、以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさい。 ま た、小数点が必要な場合も半角で入力しなさい。 パーセント増加する。 xが1パーセント増加するとき、yは 問5 以下の方程式について考える。 単位増加する。 y=6+1000logx log は自然対数を表す。 このとき、以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさい。 ま た、小数点が必要な場合も半角で入力しなさい。 xが1単位増加するとき、yは 問6 以下の方程式について考える。 パーセント増加する。 xが1パーセント増加するとき、yは logy=3+0.05x log は自然対数を表す。 このとき、以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさい。 ま た、小数点が必要な場合も半角で入力しなさい。 単位増加数。 パーセント増加する。 logy=5+20logx log は自然対数を表す。 このとき、以下の空欄に、 半角で、 もっとも適切な算用数字を入力しなさい。ま た、小数点が必要な場合も半角で入力しなさい。 パーセント増加する。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

全くわかりません。 有識者さんどなたかよろしくお願いします…

[V) PATEICOLE I ZE ST 点にした仕事を求めよ. 【問2】図のように, 一部を切り取った半径 R の円環の左端に,鉛直上方から質量mの おもり落とし, 円環に沿って滑らせる. 最下点をおもりが通過したときの時刻を t = 0, 速さがuであったとして, 以下の問に答えよ.ただし、 重力加速度の大きさをg, 円 環とおもりの間には摩擦は無いものとする.また, 円環の中心を原点とし, 鉛直下向き を軸,水平右向きを軸にとることにし.また,回転角0 は,軸から反時計回り を正の方向として測ることにする. L (i) 時刻におけるおもりの回転角が9(t) であったとして,円環上におけるこのおも りの運動方程式を,円の接線方向と法線方向に分けて書き下せ. (円運動の加速 度については、最後のメモを参照。 作用する力を接線方向と法線方向に分解して それぞれについて運動方程式を立てよ) ( ) 接線方向の運動方程式の両辺に(t) をかけてから、tについての積分を実行*1することで, é(t) と(t) の関係式を導け. この際、積分定数は初期条件を満たす様に定める必要があることに注意せよ。 (iii) 力学的エネルギー保存則の成立条件を述べたうえで、この問いについては力学的エネルギー保存則が成立することを 示せ 円環の断面図 1 VO + C N (iv) 最下点を位置エネルギーの基準点として, 力学的エネルギー保存則の式を書き下し, それが (ii) で求めたものと一致す ることを示せ. 検索 (v) おもりが角8(t) の位置にあるとき, おもりが円環面より受ける垂直抗力 N を 8(t) を用いて表せ.((ii) の関係式と運動 方程式の法線成分を用いて0(t) は使わないようにせよ) (vi) No=2√gRのとき, おもりはどの高さまで上がることができるか.最下点からの高さで答えよ. @ mg (vii) 「最上点まで, 円環に沿って上がるための の下限を求めよ。」 という問に対して,ある学生が 「最上点においての速 度』がゼロを超えればよい.最下点と最上点で力学的エネルギー保存則を立てて 1/12mg = 1/12m² +2mgR>2mgR. これより となる」 のように答えたが,すでに (vi) で見たようにこれは誤りである。 この学生の解答のどこ 2vgR FUJITSU に誤りがあるのかを述べたうえで, 正しい解答を与えよ. メモ: 円運動の加速度 半径Rの円運動をする質点の位置をr= R (cos0i + sin j) のように表すとき (0は時刻のときの中心角), 加速度は a = RÖ (-sini + cos 0j) - RO² (cos 0i+ sin(j) と表される.なお, sin Oi + cos dj は円の接線方向の単位ベクトルで, cos di + sin Oj は円の法線方向の単位ベクトル である. -

回答募集中 回答数: 0