学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1
物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1
物理 大学生・専門学校生・社会人

⑤にてエネルギー保存を示したいのですが、kl(x2-x1)とkx1x2という見慣れない項が出てきてしまいました。これらは何を表すのでしょうか。

(2) ぴっ T M 3=9/² か Imm X=0 10 22 3.1 おもりで ①おもりに対する運動方程式は m x₁ (t) = f ( x₂(+)-(α₁ (+)- l )... (i) ②おもり2に対する運動方程式は oe im m₂ (t) = = k ( X₂ (t)- X₁ (t)) -- (ii) fe X, (+) + 2₂ (²)) = ○分数の ③ cin+cil)を計算するとm(グ(ホ)+税え(たる) 両辺を積分すると m(xi(セ)+((+))=C,(c)・積分定数) 初期条件より C1=mぴなのでmxi(t)+mai(t)=mvo... (iii) よって運動量保存則が導けた。また全運動量Pの値はP=mvoと表せる。 ⑤ (1)xx1+ (ii) ×ュを計算すると m (?: (+) + Int 0₂ (C)棟分定数) ④ ciiUをtで積分するとmixi(t)+(mフェ) (+) ((m) Vott Cz (C2:積分定数) 幸せる。 PA 11 C₂ = 0 +507" m X₁ (t) + m X ₂ (t) = m Vo t すなわち x=1/2(xii(t)+22(t)) = vot と求められる。 2 12(0)²-1(ft t m x₁ x ₁ + m²₂ 21₂ = k ( x, x₂ - x₁ x₁ - x₁) - k (X₂ X₂ - 21₂ 2²₁) - x₂) 友(プ,フューズ、グレーlx)(xマューグロスコ) gift (iit) {-(メレオナズップ2)+ℓ(ゴューズ)+(x,x2+スチュ)}(乃(土) 両辺で積分すると下式のようになる。ただしC3は積分定数とする 無条件より積分定数にD 1/2/mx²+1/2/m252²={-(1/²+1/22^²)+ℓ(チュース)+x,x2}+C3 ・2 2 (TED² = mx²₁ ²2+ = mx ₂ + 1 X ² = = RX₂² - kl (X₂-X₁) - 12 X₁ X₂ = C3.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
1/2