学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気学 問題3.1と3.2わかりません。解説お願いします🙇‍♀️

長い R 1.3 ガウスの法則 例題 3 ・一様に帯電した平面とガウスの法則 面密度」の電荷が一様に分布している無限に広い平面のまわりの電界を求め よ。 となる。よって 6 20 E=- E0 E 000 図1.10 ヒント】 電荷の分布する平面に垂直な円筒に対してガウスの法則を用いる。 【解答】 図1.10に示すような, 電荷のある平面に垂直な円筒を考え,これに対して ガウスの法則を適用する.ただし,この円筒の両底面は電荷の分布する面から等しい 距離にあるとする。 対称性より、電界は円筒の上下両面に垂直で,そこでの電界の大 きさは等しい。また,電界は円筒の側面とは平行の向きとなるので、円筒の底面積を S とすると, ガウスの法則は fe·ds=2E.S=OS - E to 6 13 080000 問題∞∞ fs of foo sofs of 3.1 例題3において, 面密度の電荷が一様に分布している無限に広い平面から 距離だけ離れた点Pにおける電界の大きさ o/2c のうち, 半分は点Pから距離 が20以内にある電荷によるものであることを示せ . 3.2 無限に広い2枚の平面が平行に置かれ, それぞれ面密度。および - で帯電 している。 平面によって分けられた各領域での電界を求めよ. I II III 0 3.3 電荷を帯びた薄板の表面付近において,電界の大きさを測定したところ5× 10 N/C であった。 電荷の面密度はいくらか. 31

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

宿題の部分教えて下さい。お願いします

pa -×0= 0 M3 X; = r cos 0 prdrd0 = ; p r2 dr [sin 01 = cos 0 d0 = =x pa3 ×0=0 「M3 1 p r sin 0 prdrd0 = M r2 dr M. [- cos 0] = Yc = sin 0 de = *y よって、重心は。= (0,0) 重心の計算(多重積分) *例題5質量がMで、密度が一様な、底面の半径a、高さが bの 円錐の重心 a-fe r dr M = pdxdydz = de dz = cb ca- r2r X; = r cos0 pr dO dr dz = …= 0 = 0 =x rb ra- r2m 1 Yc = TT r sin 0 pr d0 dr dz = … = 0 cb ca- c2r ZG = (宿題) z pr de dr dz = …→ JaJJA… まとめ * 大きさのある物体の重心を定義して、重心の位置を計算した。 * 地上での重力が大きさのある物体に働く場合、物体の各点で重力が働動くた め、つり合いを議論するとき、その重力の総和を計算する必要がある。 * 大きさのある物体に働く重力の総和は、その物体の重心に全ての重力が働 いた場合とつり合いの式は同じになる。 【宿題11質量M、密度が一様で十分に薄い2辺の長さがaの 直角に等辺三角形の重心を求めよ a a 【宿題2]質量M、密度が一様で十分に薄い半径aで2辺の間 の角が45度の扇型(円を8等分したもの)の重心を求めよ 【宿題31質量M、密度が一様で底面の半径がa、高さが の円錐の重心を求めよ。 (45° a * 宿題1、2、3を解きレポートを提出してください。 締め切りは4月24日の23時59分です。 補足:ベクトルの内積 A-B * AとBのなす角0、大きさ4,B 向きを持たない A.B= AB cos 0 ベクトルのx成分,y成分,z成分 A, = A-e, A, = A· ēy. A-B= A,B,+ AyBy +A,Bz A, =A-。 Ax x軸 ,,。:単位ベクトル = (1,0,0), é, = (0,1,0), é, = (0,0,1) |= | = le|=1, = ,.。 = é,. é, = 0 *分配法則:A-(B +¢) = A· E+ A-¢は成り立つので、 A-B= (A,,+ Ayé, + Azē,). (B,ē, + B,é, + B,ē.) = AxBx + A,B, + A,B。 12

回答募集中 回答数: 0
1/4