学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の30〜36を教えてください。 2枚目はv(t)とx(t)の答えです

II page-3 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお、番号には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答すること。 単位が明記されていない物 理量はすべてSI単位の適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っている ものとする。 軸上を運動する質量3kgの物体に, 速度でに依存する抵抗力F-6(vv) が作用している。 時 刻t=0において,この物体は0の位置にいて 204m/sの速さでz軸の正方向に運動していたと する。この物体の運動方程式として適切なものを以下の選択肢からすべて選ぶと 21 となる。 (選択肢) dax dv d²v ①3- = -6(V) ②3- = dt -6(√)335 = dt dt2 =-6(VD) ④3- =vo - 6(√)³ dv dt ⑤ 3 =vo-6(vv) ⑥ z=-vot- (vo)342 ⑦ dt この運動方程式は, 変数分離を用いると, dv 03/2 = 22 23 1 I= =vot- (viit2 dt. と変形でき, 両辺の積分を実行して、 初期条件を用いることで, 24 v(t) = 26 (1+25t) と求まる。 また, 時刻における物体の位置z (t)は, 27t x(t) = う 1 + 28t となる。これらの結果から,この物体は無限に時間が経過したときに= 29 の位置で止まること が分かる。 物体がx=0からある点=Xまで動く間に抵抗力Fがする仕事Wは, 抵抗力Fを物体の動き方に あわせてで積分することによって求まるから, W = = √³ Fo X Fdx, を計算すればよいが,この計算を実際に実行するためには, 積分変数を位置から時刻tに変換して 時刻t=0から物体が=Xに到達したときの時刻t=Tまでの間にFがする仕事を求める式に変形 するのが便利である。 dr = v (t) dtに注意しつつ, 置換積分を利用してこの計算を行うことで,Wを 3132 求めることができる。 例えば, t=0からt=1/2までの間にFがする仕事は [30] - である。 33 方, 物体がt=0から29で止まるまでにFがする仕事は, T∞の場合のWを考えればよく, その結果は W=343536となる。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(8.3)の2つ目の等号ってどのようにして計算しているのでしょうか

S8 境界値開是 へWX) = ーニZ) 113 8.2) を解かなくてはならない. この場合, 真電荷の空間的分布 のz(*%) はあたえられた ゃのとする. もし, 上の方程式が解けたならば, 導体表面 S 上の表面電荷の刻 度分布 o は の 三e婦・72 ーe有(⑤) 8.3 であぁあたえられる. ここで 2 は導体表面に外向きにたてた法線方向の単位ベクト ルであり, み による微分は z 方向への方向微分である. (8.3)は, 容易にわかる ょ5K, Gauss の法則 (4.10) を導体表面上の微小部分に適用したものである. ⑱.1) ぁるいは (8.2) の偏微分方程式を, 問題に適した境界条件のもとに解くこ とは, 特殊の場合をのぞいては一般に困難である. そして個々の問題に対 して, 幣珠な数学的技巧を工夫する必要があり, それらは物理学の問題というよりも応 用数学の問題でもるといってもよいであろう. ここでは, 物理学の他の領域にお いてもよく利用される, なるべく 一般的な方法についてのみ概説するにとどめる・ 等角写像法などの特殊な方法に興味のある読者は, その方面の専門書を参照され たい. 1) 鏡像決 (method of imageS) 人 間内に点電荷と導体とがある場合を考えてみよう. このとき, mn さる

解決済み 回答数: 1