学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

至急!!わからないので教えていただきたいです!

平面から30°傾いた斜面X と, 45°傾いた斜面 Y が水平面の両側になめらかにつな がっている。水平面上のBC間には摩擦があるが, それ以外の水平面および斜面 X,Y は なめらかである。 BC間の距離は2hで, 小物体とBC間の水平面との間の動摩擦係数は 4 である。また、小物体の運動は同一鉛直面内で行われるものとし、 重力加速度の大き さをgとする。 下図のように、斜面X 上で水平面からの高さがんの点Aに質量mの小物体を置き, 静 かにはなしたところ, 小物体は斜面上をすべり下りて、 水平面上を点Bへ向かった。 斜面 X 斜面 Y A m h 小物体 1 2 - mg 2 30℃ 1ERSON √3 2 2h (1) 次の文章中の空欄 ア エに入れる式として最も適当なものを,下の①~⑨の うちからそれぞれ一つずつ選び, 番号で答えなさい。 但し, 同じ番号をくり返し選んで もよい。 小物体が斜面上をすべり下りているとき, 小物体にはたらく重力の斜面に沿った方 向の分力の大きさはア垂直抗力の大きさはイである。 このとき, 小物体が斜 面上を点Aから最下点まで移動する間に重力が小物体にする仕事はウ 垂直抗力 が小物体にする仕事はエである。 mgh √√3 2 B 水平面 mg mgh mg C ⑧ mgh 50 (3) 28.3 ④2mg ⑨2mgh 245゜ 8110 (2)点 B に達する直前の小物体の速さはいくらか。 最も適当なものを、次の①~④のうち から一つ選び、番号で答えなさい。 high ②√gh igh 0 4√2gh

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

わからないです

2. 最近、太陽系以外にも惑星系が続々と発見されている。これらの惑星系に生命が存在しているか どうかはまだわかっていない。 地球に存在するような生命が発生するためには、液体の水の存在や適度な表面温度が必要である と考えられる。将来、これらの惑星系に生命が発見されれば、生命発生の条件がより明らかになる と期待される。 仮に2つの惑星系(惑星系 P と惑星系 Q)のうち、惑星系Pの内側から数えて2番目と惑星系 Q の内側から数えて4番目の惑星にのみ生命が発生したとする。ブライアン博士は個々の惑星を内側 から順に P1, P2, P3… 及び Q1, Q2,Q3... と番号をつけて、生命発生の条件を理論的に考察してみた。 (1) ブライアン博士は「惑星の表面温度がある範囲にあれば、必ず生命が発生する」という仮説 を立てた。この仮説が惑星系 P と Qで成り立っているだろうか。惑星系 P と Q の個々の惑 星の表面温度を次の図1に示す。ここで、生命が発生した惑星 P2 と Q4 は白抜きの記号で表 す。ブライアン博士の仮説を否定する条件を、下から一つ選べ。 表面温度 (°C) 350 300 250 200 150 100 50 -50 - 100 - 150 △ 1 U 1 1 2 3 4 5 6 7 惑星の番号(内側から7番目まで) 図 1 惑星の内側からの番号と表面温度の関係 ① P1 の表面温度は Q1 より低く、 P2 より高い ②P2 の表面温度はQ3より低く、 Q4 より高い ③ P3 の表面温度はP2 より低く、 Q4 より高い 4, P4の表面温度は P5 より高く、 Q4 より低い ■□ 惑星系 P ▲ △ 惑星系 Q 答え(

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

○初等力学の質問です。 以下に添付している問題⑵~⑻の解答を教えて下さい🙇‍♀️。計算の過程も書いて頂ければ幸いです。 もし、可能でしたら自身の回答における間違い等を確認し、教えて頂けると非常に有難いです。

1 内径aの円筒面の一部が図1のようにA点において水平面に滑らかに接している。 水平面上にばね(ば ね係数k: 質量は無視できる)を設置し、 ばねを α/2だけ締めて静かに離すことで質量mの小球Pを円筒 面に向けて発射する。 重力加速度をg とし、また水平面、 円筒内面はともになめらかであるとする。必要 な物理量は定義した上で用いること。 なお、 各設問に対する解答は解答用紙の所定の欄に導出過程ととも に記入すること。 (1) 小球Pはばねが自然長になった時点でばねから離れた。その理由を運動方程式を用いて説明しなさい。 (2) 小球 P は円筒面内に入り、円筒内面に沿ってB点まで達した。 このときの小球P の速度を求めなさ い。 (3) 円筒面内における小球Pの運動方程式を求めなさい。 (4) 小球Pが(2)に引き続き円筒内面に沿って運動し点Cを越えるために、 ばね係数kが満たすべき条件を (不等式で)求めなさい。 (5) 小球Pは点Dにおいて円筒内面から離れた。 このときのばね定数kを求めなさい。 (6) (5)において、 小球P のその後の運動について式を用いながら説明しなさい。 (7) (6)において、 小球Pが達する最高点のy座標を求めなさい。 (8) AD 間における小球P の加速度の大きさを0の関数として示しなさい。 k P műm Mo m VA A -120° D B C x

回答募集中 回答数: 0
1/6