学年

教科

質問の種類

物理 大学生・専門学校生・社会人

107番についてです (2)まで正解です (3)以降で自分が書いてることのうち何を間違えているのか指摘してほしいです 習っている先生が合成容量を使わない方針なので、その方針で指摘していただけると助かります

72 た。極板間の電場,電位差,静電エネルギーはそれぞれ何倍になるか。 (センター試験 + 福岡大) XX (4)(3)に続いて、極板と同形で厚さd.比誘電率2の誘電体を極板間に 入れた。 極板間の電位差 V, を Vo で表せ。X 3/16 100 間隔 だけ離れた極板 A,Bからなる電気容 4305/1 量Cの平行板コンデンサー, 起電力 V の電池と スイッチSからなる図1のような回路がある。 まず, スイッチSを閉じた。 A V B 図1 ○○(1) コンデンサーに蓄えられた電気量はいくらか。 (2) このときの極板Aから極板Bまでの電位の 次に,スイッチSは閉じたまま、厚さの金 属板Pを図2のように極板 A, B に平行に極板 間の中央に挿入した。 A V P B 図2 変化の様子を極板Aからの距離を横軸としてグラフに描け。 (3)また,このとき極板Aに蓄えられた電気量はいくらか。 (4)さらに,スイッチSを開いた後,金属板Pを取り去った。このと きの極板間の電位差 V' ばいくらか。 メト (5) Pを取り去るときに外力のした仕事 Wはいくらか。 6/19 X(3) C, にかかる電圧はいくらか。 _X (4) C2 に蓄えられる電気量はいくらか。 × (5) 抵抗Rで発生したジュール熱はいくらか。 108 起電力が V で内部抵抗の無視できる電池 E, 電気容量がCの平行板コンデンサーC, 抵抗値Rの抵抗R, およびスイッチSを接続 した回路がある。 G点は接地されており,そ の電位は0である。 はじめSは開いており, コンデンサーに電荷は蓄えられていない。 E 電磁気 73 (京都産大) R (a) まずSを閉じ, Cを充電する。 Sを閉じた瞬間に抵抗Rを流れる 電流は(1)である。 (b)Sを閉じてから十分に時間がたったとき,Cに蓄えられている静電 エネルギーは (2) である。またこの充電の過程で電池がした仕事 は(3)であり、抵抗Rで発生したジュール熱は(4)である。 (c)次に(b)の状態からSを開いた。最初Cの極板間隔はdであったが、 極板を平行に保ったままゆっくりと2dに広げた。このときA点の である。 また極板を広げるのに必要な仕事は(6) とされる。 電位は (5) であり,極板間に働く静電気力の大きさ(一定と考えてよい)は (7) (近畿大 + 防衛大) (愛知工大 + 静岡大) R S2 109 極板 A,Bからなるコンデンサーがあり [電荷 Q [C] が充電されている。 極板は一辺の長 さが〔m〕の正方形で,極板間隔はd[m] であ ある。 極板間は真空で, 電場 (電界) は一様とし、 真空の誘電率を co〔F/m〕 とする。 [+] [Q] -Q 図 1 +Q A 107 図はコンデンサー Ci, C2, C3 (電気 容量はそれぞれ C, 2C,3C) 電池 (起 電力V) およびスイッチ S. S2と抵抗R からなる回路である。 最初, スイッチは どちらも開いており、いずれのコンデン サーにも電荷はない。 I. まず, スイッチを閉じ, C, と C2 とを充電した。 _ (1) C, に蓄えられる電気量はいくらか。 (2) C2 にかかる電圧はいくらか。 Ⅱ.次にS」を開いてから,S2を閉じ、十分に時間がたった。 A,B間に, 図2のように誘電体を挿入する。 誘電体は一辺1 [m] の正方形で,厚さd[m] 比誘電率 e, である。 誘電体をx [m]だけ挿入し たとき, 誘電体部分の電気容量は (1) (F) であり,真空部分の電気容量は (2) [F]だ から,全体での電気容量は(3) [F] となる。 x -Q 図2 2.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

光の干渉の質問です。このような問題でmがいくつから始まるか書いていない時、どうするべきですか? また、2dm×nl=λ/2×2(m-1)の2(m-1)は2mじゃないのはなぜですか?

光 <<さび形> 2 (慶応大) いい <>:*TO* 図のように、ガラス板 A の上にガラス板Bを重ね、 その一方の端にアルミ薄膜をはさみ、 くさび形をした薄い層 POQ を作る。 ガラ ス板Bの上方からガラス板 Aに垂直に単色光を入射させた。 このとき、 上から見ると平行で等間隔の明暗のしま模様が見られた。 (1) 暗い部分のしまについて, しまの本数を左から数えることにする。 このとき、真空中での波長を入とすると, "番目のしまの位 置における薄層の厚さは,およびm とどのような関係にあるか。ただし, ガラス板 A, ガラス板Bおよび薄層物質の屈折率を,それぞれ , B およびと し,それらの大小関係が, (7) NA>n, NB>NL (イ)>>B (ウ) (ア) NA>nn のとき、 干渉条件より、 同位相のとき、弱めあう条件 2 - × 奇数 2 光路差 2dm X NL = = 2 2 偶数 ×2(m-1) 2m-2 固定端反射が 1回あるので, <-- 偶奇が入れ替わる 光路差 = 経路差 × 屈折率 ※このときかける屈折率は, 経路差が含まれる「空気の屈折 ⇔:.dm = (m-1) 2nL dm を求めよ。 の3つの場合について 薄層 (NL < NB) に反射されるので、 自由端反射 ガラス板 B ガラス板 A ガラス A(n^n) 24 y 光 OP Fdm ガラス板 B Q アルミ ガラス板 A P 薄層 アルミ (NL) ル箔 D W RE

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校物理、電磁気の問題です! 急いでます!どなたでも回答していただけると嬉しいです!お願いします!🙇‍♂️

G |+QL R B 誘電率を H 平行平板コンデンサーが端子GとHの間に接続されており,端子G'とHの間には電 池と抵抗(抵抗値 R)が直列に接続され,端子G”とH°の間には抵抗(抵抗値 R)が接続さ れていた(図参照)。コンデンサーの電極AとBの面積はSで,その電極間隔はdである とする。電極間は真空であり,真空の誘電率をsとする。まず,端子GとHを,端子G'と Hにそれぞれ接続すると、電流が流れ, 電極 A とBにそれぞれ電荷 +Qと-Qが蓄えら れ,電極AとBの間の電位差は となった。 次に,端子GとHから端子G'とH'を, それぞれ切り離したのち,電極Bを固定したま ま,電極Aを,手をつかって一定の力Fで図の下方にゆっくりとょだけ動かした結果,電 極間隔がdからdーxとなった。このとき、,手がした仕事は であった。この力Fは電極Aに蓄えられた電荷+Qが、電極Bに蓄えられた電 荷-Qによって生じた電界(強さE)から受ける静電気力と見なすことができる。この電界 の強さどは、電極AとBの間の電界の強さEの5 さらに、電極AとBの間隔を4-xに保ったまま,端子GとHを端子G'とHに,それぞ れ接続した。このとき,電流が流れ,電極A に潜えられた電荷は 最後に、端子GとHを,端子G'とHからとりはずし,それぞれ端子G”とH"に接続した。 接続してから,十分時間がたつまでに,端子G'とH°の間の抵抗で発生したジュール熱 7 となり,電極AとBの間の電界の強さEは 2 3 であり,Fの大きさは 4 倍である。 だけ変化した。 6 は であった。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

ここの5-1なのですが、 直列ではなく並列になるというところがわからないので わかる方がいらっしゃいましたら教えて欲しいです

A真空中において, 面積S(m°] の2枚の極板を間 隔d(m] 離して置いて, 起電力V[V] の電池につな ぎ、スイッチSを閉じて充電した。 真空の誘電率を Eo[F/m] とし、 極板間の電場は一様とする。 (1) コンデンサーの電気量, 極板間の電場の強さ, 静 電エネルギーをそれぞれ求めよ。 (2) スイッチを閉じたまま, 極板間隔を 2d[m] にし た。電気量と電場の強さを求めよ。 (3) 極板間隔をもとのdに戻し,スイッチを開いてから, 間隔を2dにした。 極板 間の電圧を求めよ。 また, 間隔を広げる際に必要な外力の仕事を求めよ。 (4)続いて, スイッチは開いたまま, 極板間の右半分に厚さ d, 比誘電率 e, の誘 電体を挿入した。電気容量と電圧を求めよ。 52F と3Fのコンデンサーをそれぞれ200 V, 300Vで充電し, 図のようにつなぎ, スイッチSを閉 2F S 15 じた。 200 V (1) コンデンサーの電圧はいくらになるか。 3F (2) 2uF のコンデンサーで左側の極板の電気量は 何uC か。 300 V (3) 続いて,2μF のコンデンサーの極板間隔を2倍 にした。 コンデンサーの電圧はいくらになるか。 6 帯電していないコンデンサー C. と C2, 起電力V の電池を図のように接続し, スイッチSを閉じる。 C, の電気容量はCで, 極板間隔はdとする。 Ca は 3 Cと同形の極板からなり, 極板間隔は である。 2 ) Caの電気容量をCを用いて表せ。 2 C,と Ca の合成容量をCを用いて表せ。 3 C,の電気量と電圧を求めよ。 スイッチを開き, C。の極板間(図中の点線部)に厚さdの金属板を挿入する。 C,の電圧を求めよ。 いて, C, と Ca を回路から切り離し, 正·負の極性を合わせて並列につない だときの電圧を求めよ。 279

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

厚さがdと言われているので、写真の黒字の範囲で考えた場合答えは、0、(ρ/εo)z、(ρ/εo)×dになりますか?

2 微分形のガウスの法則を用いて電場を求める 次に,微分形のガウスの法則 P(r) V-E(r) = €o を用いて、平面電荷の作る電場を求めてみよう国,この場合,平面電荷を実は厚みdの板に一様な密度pで分 布している電荷だと考えることになる(図).この仮設は尤もらしい。なぜなら(厚みのない)2次元的な平面 電荷は実際には存在せず,見るものさしを細かくしていけば,いつかは厚みのある板状の一様電荷分布になる だろうからだ、原点を板の厚みの半分のところにとり図口のように座標軸を導入する。こにでも対称性から、 (0,0, di2) p (0,0, -d2) x 図7 電場はzにしか依存せず,z軸に平行な向きであることが分かる。よって(21) 式は次のようになる。 P €O (2.2) 0 ||> d/2 について,対称性から E.(-2) = -E(2) であることに留意すると, -E (2く-d/2) (2.3) E ただしEは定数、また|<d/2に対して E.(2) = 2:+ D (2.4) Dは定数である国z= ±d/2 で電場は連続であるという条件から、 E(d/2) = 2d (2.5) 2+D=E E(-d/2) = pd +D=-E (2.6) €o 2 :E- d 2co D=0. (2.7) ** ひとまずふ関数を用いないで電場を求め,後でもう一度ふ関数を用いて解くことにする。 *9対称性の要請である E(-2) = -E.(2) を満たすためには D=0であることは分かる。 4 2012-05-21ver1, 22ver2, 2013-03-09ver3 ZSO 03Zsd zad ガウスの法則について すなわち, pd 2€0 P. €O pd 2€o (-d/2<:くd/2) (2.8) (こ>d/2).

解決済み 回答数: 1
1/2