学年

教科

質問の種類

物理 大学生・専門学校生・社会人

A.Bの電流がcにつくる磁場はなぜ図のようになるのか教えてください。 右ねじの法則をどう使えば図のようになるんですか?

例題43 平行電流がおよぼしあう力 図のように, 3本の平行で十分に長い直線状の導線A, B, とBに紙面の表から裏の向きに, Cには逆向きに,いずれも cを, 一辺10cmの正三角形の頂点に, 紙面に垂直に置く。 A 12.0Aの電流を流す。 真空の透磁率を4×10-7 N/A とする。 (1) A,Bの電流が,Cの位置につくる磁場の向きと強さはい くらか。 (2)導線Cの長さ 0.50mの部分が受ける, 力の向きと大きさはいくらか。 指針 (1) ねじの法則を用いて, A, B の電流がCの位置につくる磁場を図示し, それ らのベクトル和を求める。 磁場の強さは. H=I/(2πr) の式を用いて計算する。 (2) フレミングの左手の法則から力の向きを, 磁場 261 発展問題 524 10cm B ので,Ha=H, である。 合成磁場は,図の右 向きとなる。 H, HB は, I 2.0 10 H=HB= = = - [A/m〕 2лr 2×0.10 π 合成磁場の強さHは, F=1JHI の式から力の大きさを求める。H=2×Hacos30°=2x10x1 08 π =5.50A/m 5.5A/m 10/3 = π 解説 F30° 電流の大きさは等しく, Cまでの距離も等しい (1)A,Bの電流がC の位置につくる磁場 A,Bは,右ねじの 法則から、図のように なる。HA,HB は,そ れぞれ AC, BC と垂直である。また,A,Bの -HB CQ H (2) フレミングの左手の法則から, 導線Cが受 ける力の向きは,AB と垂直であり,図の上 HA 向きとなる。 力の大きさFは, AQ &B 10√3 F=μolHl=(4×10-7) x2.0x -×0.50 π =6.92×10-N 6.9×10-N

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

この問題がわかりません! 教えてください!

【問題1】 自動車を加速させる力は次のどれか。 ①~③の該当するものを一つ選べ。 ①エンジンの回転力 ② タイヤが路面を後ろに押す力 ③路面からの摩擦力 【問題2】 バネ定数 350N/m のバネの一端に, 質量が 10.0kgの小球を取り付けて傾斜角 30.0℃のな めらかな斜面上に置き、図のようにバネの他端を固定する。 このときの静止している小球には たらく力を考える。 重力加速度の大きさを 9.80m/s2, 有効数字 を3桁とする。 ※ 単位[N] (ニュートン): 力の単位で, [kg・m/s2] と表せる 20 (1) バネの伸びの大きさ x[cm] を求めよ。 (2) 小球にはたらく垂直抗力の大きさ N[N] を求めよ。 130.0° 【問題3】 質量m=5.00kg, 半径R=20.0cm, 長さ 180.0cmの円柱が, なめらかな2つの面 A, B に はさまれて静止している。面Aは水平面となす角度が0A = 90.0°, 面BはOp=30.0℃である。重 力加速度の大きさを g=9.80m/s2として,次の問に答えよ。 (1) 円柱が面 A から受ける垂直抗力の大きさ NA[N]を 求めよ。 面A 円柱 m 面B R (2) 円柱が面 Bから受ける垂直抗力の大きさ NB[N] を 求めよ。 OA OB 【問題4】 容器に水を入れ, その中に質量の無視できる伸び縮みのしないひもを付けて天井から吊り 下げた金属球を入れた。 水の密度をp=1.00g/cm3, 金属球の半径をr=10.0cm, 質量を m=5.00kg, 重力加速度の大きさを 99.80m/s2として,次の問に答えよ。 (円周率の値の有効数字を考えること。) (1) 金属球が押しのけた水にはたらく重力の大きさ W[N] を求めよ。 (2) 金属球が受ける浮力の大きさ F[N] を求めよ。 (3) ひもの張力の大きさ 7[N] を求めよ。 m 金属球 P 水

回答募集中 回答数: 0
1/26