学年

教科

質問の種類

物理 大学生・専門学校生・社会人

電磁気学 問題3.1と3.2わかりません。解説お願いします🙇‍♀️

長い R 1.3 ガウスの法則 例題 3 ・一様に帯電した平面とガウスの法則 面密度」の電荷が一様に分布している無限に広い平面のまわりの電界を求め よ。 となる。よって 6 20 E=- E0 E 000 図1.10 ヒント】 電荷の分布する平面に垂直な円筒に対してガウスの法則を用いる。 【解答】 図1.10に示すような, 電荷のある平面に垂直な円筒を考え,これに対して ガウスの法則を適用する.ただし,この円筒の両底面は電荷の分布する面から等しい 距離にあるとする。 対称性より、電界は円筒の上下両面に垂直で,そこでの電界の大 きさは等しい。また,電界は円筒の側面とは平行の向きとなるので、円筒の底面積を S とすると, ガウスの法則は fe·ds=2E.S=OS - E to 6 13 080000 問題∞∞ fs of foo sofs of 3.1 例題3において, 面密度の電荷が一様に分布している無限に広い平面から 距離だけ離れた点Pにおける電界の大きさ o/2c のうち, 半分は点Pから距離 が20以内にある電荷によるものであることを示せ . 3.2 無限に広い2枚の平面が平行に置かれ, それぞれ面密度。および - で帯電 している。 平面によって分けられた各領域での電界を求めよ. I II III 0 3.3 電荷を帯びた薄板の表面付近において,電界の大きさを測定したところ5× 10 N/C であった。 電荷の面密度はいくらか. 31

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

わかる方おられないですか

問4 理想良導体と真空の境界面 (±0) における入射電磁波の反射と透過, およびこれらの 連続性を考える. すなわち, 電磁波が+方向に導体 (境界はz=0) に入射するとき, 電 場に対しての連続条件, lim_[Ei(z,t) + Er(z,t)] = lim Ee(z,t). (左辺 真空側,右辺導体内部) ト0' 24+0 が成り立つものとする. ここで,添え字のi, r, tはそれぞれ入射波, 反射波, 透過波を意 味する. 以下では問3を理想化し、 近似的に導体内部 (境界を含む, 0) の電場をゼロ と考える(μ= Mo とする). 入射波をFi(z,t) = (Encos(kz-wt), 0,0) とするとき, (1) 導体表面での振幅反射率 (反射電場と入射電場の成分の比) を求め,入射電場が固定 端反射をすることを説明せよ. (2) 反射電 Er(s,t) の表式 (ベクトル成分) を求めよ (-z方向に進むことを考えて書き 下せ). (3) 定常状態では真空側 (z<0の領域)に電場の定在波が形成されることを数式で示し その節と腹の位置の概略を図示せよ。 また, 節と節 (腹と腹)の間の距離を波長入を用 いて表せ. (4) 電場の表式から入射磁場と反射磁場の表式 (ベクトル成分)を求めよ. (5) 磁場の振幅反射率を求め, 磁場はこの導体表面で自由端反射されることを説明せよ。 (6) 定常状態では<0 の領域に磁場の定在波も形成されることを数式で示し, その節と腹 の位置の概略を図示せよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
1/8