学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(4)以降全く進めません 答えもなくて困っています どなたか解説をお願いできませんか

Oshi oshil oshi 20:28 日 oshi 前のページ shin toshin toshin ■ 4G95 toshin 次のページwhin [hin 2 図に示すように、水平面に対して傾き 30℃のなめらかな斜面とその下端から連 続する水平な床がある。 斜面上の高さんのところから質量mの物体Aを静かに 放したところ、 物体Aは斜面をすべり落ち、斜面下端Pから右側にだけ離れ た水平面上の点に置かれていたMの物体Bと最初の衝突を起こした。 こ のときのはね返り係数をe (0<e< 1), 重力加速度をg, 物体A, Bと斜面お よび床面との摩擦は無視できるものとして、 以下の問い(問1~5)に答えなさ い。ただし、 右方向を正の向きとし. <1とする。 min oshi hin 問1 物体Bと最初に衝突する直前の物体A の速度はいくらか。 g, hを用 いて答えなさい。 oshi Shin Oshi 問2 最初の衝突直後の物体A, B の速度 UAY UB はそれぞれいくらか。 g. e,m, M, hを用いて答えなさい。 hin 物体Bの質量は物体Aの質量の4倍 (M=4m) であり,e=0.5のとき, 最初 Oshiの衝突後、物体Aは左向きに進み、斜面を高さHまでのぼり,そこで向きを変え て再び斜面をすべり落ちた。 一方、物体Bは右向きに進み、 しだけ離れた位置 Q oshiにある鉛直な壁と完全弾性衝突して向きを変えた。 その後、物体Aと物体Bは再 び衝突した。 hin oshi oshi 問3 最初の衝突直後。 物体が斜面上で達する最高点の高さはいくらか。 h を用いて答えなさい。 また、 物体Aが最初の衝突から斜面上で最高点に 達するまでの時間 T, はいくらか。 g, h, lを用いて答えなさい。 min nin oshi oshi 問43で物体Aが斜面上で最高点に達してから物体Bと2回目の衝突を起 こすまでの時間 T はいくらか。 . . 1を用いて答えなさい。 結果だけで なく、 導出の過程を整理し、解答欄に記載しなさい。 min hin oshi 問5 この2回目の衝突は0点の左右どちら側で起こるか。 また。 0点との距 離Lはいくらか。 h, lを用いて答えなさい。 nin oshi min 壁 A oshi shi h Oshi < ああ 30° P MBO toshin-kakomon.com ■ nin hin hin

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を教えて頂けると助かります。 2枚目はそれまでの解答です。

III page-4 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお, 37 には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答し, 46 には 「①保存力である, ② 保存力でない」 のいずれかを選択して解答せよ。 単位が明記されていない物理量はすべてSI単位の 適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っているものとする。 質量2kgの物体が,軸上を運動している。 物体は時刻t=0において,r= =10の位置に静止して いたとする。 この物体は, ポテンシャルが であるような保存力F を受けている。 U(z)=4z2-48z +144, はじめに, 物体に保存力Fのみが作用している場合を考えよう。 この物体の運動方程式を書くと, dx dt2 37 38 (x- 39 となる。 X =æ- 39 と置いて, 運動方程式を書き換え, Xに対する一般解を求めると, A, Bを任 意の定数として X=z-39 = Acos 40t + B sin 40t, となり, 初期条件を用いることでAおよびBがA=41,B = 42 と求まる。この結果等から, この 物体は 43 <z 10の範囲を運動することがわかる。 また, x=9の位置を物体が通過する瞬間の 運動エネルギーはK= 44 45 である。 次に,Fに加えて, 物体に速度と逆方向に, 大きさが一定の力fが加わる場合を考える。ここで, |f| = 4とする。この力は46 この物体はt=0においての負方向に動き出した後,æ = 47の 位置で一旦停止し, 軸の正方向に向かって運動しだす。 物体があるところで一旦停止した場合, |F|>4であれば保存力Fによって物体は再度動き出し, F≤4であれば静止摩擦力によってその位 置に静止したまま動かないものとする。 物体はt=0で動き出した後に48 回だけ運動の方向を反転 させて軸上を行き来した後, 最終的にはヱ = 49 の位置で静止することになる。

回答募集中 回答数: 0
1/19