学年

教科

質問の種類

物理 大学生・専門学校生・社会人

この問題の解答を作っていただけませんか。院試の勉強に役立てるつもりです。

問題1 粒子の質量 m、ばね定数K の1次元調和振動子を考える。波動関数 y=N.exp( 26 ) yo N=exp(-1211 ) exp(61) - 2017(6) 00: = non! を考える。ここで、yは1次元調和振動子の基底状態、*およびらはフォノンの生成および消滅演 算子 z は複素定数である。 (4) (5) の解答はm、 K を用いずに、講義でも用いた実定数 1 a = V h = = ħ² (mk) = ½ 4 mo z、および、hを用いて表せ。 (1)は規格化されたエネルギー固有関数y=(6) を用いて 8 1 y = N₂Σ n=0 Vn! と表すことができることを示せ。 (2)yが演算子の固有関数であることを示せ。 さらに固有値を求めよ。 (3)が規格化されていることを示せ。 (4)yによる位置演算子の期待値x、運動量演算子のx 成分 px の期待値を求めよ。 (5)位置のゆらぎ4x=√<yl(i-xy)、および運動量のx成分のゆらぎ4p=<yl(p.-P)^v)を を求めよ。 この結果を用いて、不確定性関係が満たされていることを確認せよ。 (6) 初期条件(0)=yの場合の時間に依存したシュレディンガー方程式の時刻 t での解をy(t) と 表す。B(t)=(y(t) (1) とする。 〈4 (1) 6y(t)) をB(t) を用いて表せ。 (7) B(t)の満たす微分方程式を導出し、その一般解を求めよ。 (8)時刻tでの解y(t)による、位置、運動量のx成分の期待値を求めよ。初期状態のzは z=rexp(i0)、 ここでおよび0は実数である、で与えられるとし、期待値を、a、r、 0、 w、 t、および、hを用 いて表せ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この量子力学の一次元ポテンシャル問題が分かりません.可能であれば解説をしていただきたいです.初心者なので丁寧に教えて下さい!

3.w(x)を実関数として以下の形に書くことができるポテンシャルに対する質量mの粒子 の1次元ポテンシャル問題を考える. =2727 V(x) = 2m ·(w¹²(x) — w'(x)). (3.1) ここで,'はxによる微分を表す。例として,w(x)=(mw/2h)x2のときにV(x)はよく知られ た角振動数の調和振動子のポテンシャルから定数を引いたものになる. (a)を運動量演算子,父を位置演算子として、この系のハミルトン演算子は,一般にある 適切な実関数f(x)を用いて 1 2m =(i+if(x))(i-if(x)) (3.2) という形に書くことができる. f(x) を具体的に求めることでこのことを示せ.このこと から,この系のエネルギー固有値 En (n=0,1,...)は非負であることがわかる. 以下では, EoE1E2.・・とする. (b) エネルギー固有値E。=0の束縛状態が存在する場合を考える.この基底状態の波動関数 (x)を求めよ. ただし, 規格化定数は問わない. (c) ポテンシャルV(x)が V(x)= == 2 2 h² + = 1 ;(tanh?(x/a). ma² cosh2(x/a) 2ma² 2ma2 cosh² (x/a)) (3.3) (aは定数) のとき,対応するw(x) を求めよ. また, その結果を利用して、ポテンシャル が 2 U(x) = - ma²cosh2(x/a) (3.4) で与えられるときに基底状態のエネルギー固有値と波動関数を求めよ. ただし, 規格化 定数は問わない. (d) (3.1) 「対」になるポテンシャル V(x) = h² (w12 (x) + w" (x)) (3.5) を考える.この「対」になる系の束縛状態のエネルギースペクトルÉmはÉm=E(=0) となるものが存在しないことを除いて束縛状態のEnと一致する,すなわち,Ēo = E1 E1 = E2, ... となることを示せ. (e) ポテンシャル(3.3)と 「対」になるポテンシャルV (x) を求め, (4) の結果を利用すること で、ポテンシャルが (3.4)で与えられるときの束縛状態の個数を求めよ.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学の問題です。 わかる方おられませんか

2. 外部磁場中の荷電粒子の量子力学、 Landau 準位 ベクトルポテンシャル A(t,x)、 スカラーポテ ンシャル (t,x) がある3次元空間の中を質量m、 電荷eをもつ荷電粒子の運動を考える。 その運動量 をp、 位置座標をェとすると、 荷電粒子を記述するハミルトニアンは以下で与えられる。 1 H(t, z,p) = -(p- eA(t, x))² + eo(t, x) 2m (1) (1) この荷電粒子を表す波動関数を重(t,x) としたとき、 確率密度と確率の流れの密度は、ベクトルポ テンシャルがない (演習問題No.1の) 場合に対し微分∇を 「共変微分」Dに置き換えることで 得られることが知られている。 p:=²=v*v, J:= {*D-(D)*} ここで、 2m D:= V-ie A, +∇ ・J=0が成立することを示せ。 とおいた。このとき、連続の方程式 (2) 電場E = -Vo-b と磁場 B = ∇×4が次の(ゲージ) 変換で不変であることを示せ。 at 以下電場はなく、静磁場のみがある場合を考え、磁場が向いている方向を軸とする: B = (0,0,B) Əx AA'′=A_∇入, 中→d=6+ at ここで、 入 = \(t,x) は任意のスカラー場である。 さらに荷電粒子の波動関数も同時に →=e-ie (5) と変換させた場合、 Schrodinger 方程式場=H(t,x, l∇)が変換した場に対しても同様に成 立することを示せ。 A = (0, Bx, 0) にとって、とzに依存しない波動関数 (x,y) を調べる。 (2) このとき、トの取りうる範囲を求めよ。 (3) この背景の下で縦と横の長さがLz, Ly の長方形状の十分薄い平板を0に {(x,y)|0 ≤x≤LT, 0≤y≤Ly} (7) のように置き、この平板内に束縛される荷電粒子の運動を調べる。 このとき、以下のように、ベクト ルポテンシャルを Landau ゲージ (8) (4) このことを、Schrodinger 方程式がゲージ変換のもとで共変性をもつor 共変的である、などという。 同じ量子数をもつ状態がなす部分ベクトル空間の次元のことをその状態の縮退度と呼ぶ。 (6) (3) 波動関数 (x,y)=(x)eikyのように変数分離して荷電粒子に対する時間に依存しない Schrodinger 方程式を解き、 固有関数とエネルギー固有値を全て求めよ。 ただし、演習のプリントで与えられ た特殊関数は説明なしに用いて良いものとし、 規格化も行わなくて良い。 (4) 波動関数 (x,y) は方向に周期境界条件を満たすとする。 v(x, y) = v(x,y + Ly) (5) 基底状態に対しょ軸の位置演算子の期待値 (z) をe, B,kを用いて表わせ。 また、 位置演算子の期 待値が平板内に存在する条件から、 基底状態の縮退度を求めよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1
物理 大学生・専門学校生・社会人

電気電子回路です。 この分野の専攻ではないのでできるだけわかりやすく説明していただきたいです。 よろしくお願いします。

R (1-1) 10, (1-2) 20 (1-3) 30, (2-1) 10, (2-2) 30, (2-3) 15, (2-4) 10 (1) 演算増幅器 (operational amplifier) 抵抗 (resistance), キャパシタンス (capacitance) から構成される回路 (circuit) について以下の各小問に答えよ.なお,図中の記号は以下の凡例に従うとする.また, 正弦波交流電 圧 (sinusoidal AC voltage) は複素数 (complex numbers) 表示されており、 その絶対値は実効値 (effective value) を表すとし,演算増幅器の利得 (gain) 及び入力インピーダンス (input impedance) は無限大, 出力インピーダ ンス (output impedance) は0であるとする. 虚数単位 (imaginary unit) が必要な場合には」 を用いること. V V. d+o 凡例 + 図1 aR R otol C tr (11) 図1に示す非反転増幅器 (non-inverting amplifier) の利得 A = Vout/Vim を求めよ。 なお は 0 または正の実 数である。 Vout V (12) 図2に示す回路において, 角周波数 (angular frequency) の正弦波交流電圧を印加した. 回路の利得を =vk/vo としたとき、βの絶対値を最大とする角周波数 ac を R, Cの式として示すとともに, w=a の 時の入力電圧に対する出力電圧 Pb の位相差 (phase difference) を求めよ。 (feedback circuit) として図2の回路を追加した図3の回路を考える. 今,α を0から 回路 (13) 図1の回路に 連続的に増加させながら出力 Vout を観測したところ、あるαの時に発振 (oscillation) を開始した. この時 の及び発振周波数 (oscillation frequency) を R, Cの式として示せ . 抵抗値R を持つ抵抗 〇 静電容量 (electrostatic capacity) Cを持つキャパシタンス ○ 正弦波交流電圧を出力する電圧源 演算増幅器 接地 (earth connection) C R 3 図2 Rok 20 V₂ V₂ aR 図3 R Vout -o

未解決 回答数: 1
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

量子力学・ハイゼンベルクの交換相互作用についての問題です。 参考書を参考に(あ)〜(え)まで解いてみたのですが、考え方はあっていますか? また、(お)以降の解説をお願いします。ブロッホの定理やフーリエ変換はどのように効いてくるのでしょうか?

III. 以下の文章のあ き の枠内に当てはまる数式や記号を答えよ。 ヘ =1として,スピン角運動量1/2をもつ三つのスピンが,互いに相互作用している系を考え る。スピン演算子を$, S,, $, とすると,系のハミルトニアンは次のように与えられる。 自=-J(S, S+ S,. S。+ $。. S.), J>0. ここでも番目(;= 1,2,3) のスピンのz,9, z 方向成分をそれぞれ好,S, S とする。スピン演算 子の間には (S, SY] = iS}, [SF, SY] = 0などの交換関係が成り立つ、自) = E\d) を満たす。 固有エネルギーEとエネルギー固有状態|)を求めたい。 全スピン角運動量 Shot = $, + $2+S。を使うとハミルトニアンは次のように書き直すことが できる。 自= - + JC, 定数C= あ 'tot このことから基底状態のエネルギー固有値は 時の固有値は S= +1/2, -1/2 のニつであり,これらに相当する1スピン状態をそれぞれ↑。 ↓と記すと,3スピン状態は,|S{ S S3) = |M1),| t)などのように表すことができる。独 立な3スピン状態は全部で 具体的にエネルギー固有状態をあらわしてみよう。 まず基底状態のうちで Sto = St+ Sz + Sg が最大の状態は |S S; Sg) ちに書き下すことができる。 つぎにエネルギー固有状態のうちで Sie = 1/2 のものを求めたい,ハミルトニアンと交換可 能な演算子はハミルトニアンと同時固有状態をもつことを利用する.このような演算子の一つ にスピンをRIS; S; S) = |S; S; S;)のように巡回置換する演算子良がある。-iとなるこ とと,周期系におけるブロッホの定理やフーリエ変換を思い出すと,Rと St。と自の同時固有 状態は適切な定数A(複素数も含む)を用いて い である。 う 種類あり,規格直交基底をなす。にれらの線形結合の形で え のように直 三 る(「4)+A|)+ ^°| +t) V3 と表せることが分かる。Aの取り得る値をすべて列挙すると 底状態となるのは A- か 以上の結果からすでに二つ基底状態が得られた。残りの基底状態を列挙すると, お となる.このうちで,基 の場合である。 き と なる。

未解決 回答数: 1
1/2