学年

教科

質問の種類

物理 大学生・専門学校生・社会人

量子力学・スピンハミルトニアンの時間発展について質問です。(1)〜(3)までは画像2枚目のように解いたのですが、(4)(5)の計算がとても煩雑になってしまいました。この方針で大丈夫なのでしょうか?また、(6)が分かりません。どのように考えればよいのでしょうか?

II. 図3のように番号;= 1,2,3で区別される3つのスピンがあり、それぞれ2軸方向に上向 きと下向きの2つの状態 |0);, [1}; をとることができる。2種類の相互作用 角,。を選択的に 切り替え、1番目と2番目のスピンの状態を3番目のスピンによって制御する。簡単のためプ ランク定数を2で割った定数んを1とし、相互作用白,白および時間tを無次元量として取 り扱う。 自。 ○ン 0 9 三 図3 ここで、1は恒等演算子、9, o9は番目のスピンの演算子,の行列表現である。各演 算子は10); = |0):, of° |1}; = -|1); を満たす。また、3つのスピンからなる状態を|1,0)|0}= |1);|0)2|0)s などと記すことにする。 (1) (),(o)°, of o) + ooを計算せよ。 (2) 9 を 10);, |1);に作用させた結果をそれぞれ示せ。 C○ (3) 白のもとでの時間発展演算子む(t) = exp(-8白t) = とーを白t)”が n! n=0 0(t) = cos° (t)i - sin° (t)a{)a£) + icos (t) sin (t)(o{) + )) を満たすことを示せ。ただし、一般に可換な演算子A, Bについて、e(4+B) - eáeb が成り 立つことに留意せよ。 (4) 白のもとで時間む、続いてのもとで時間tzだけ相互作用したときの時間発展は ()()= exp(-iHnt) exp(-iAt)と記述される。10,0)|0), I0,1)|0), |1,0) |0), |1, 1)|10) の4つの状態がひっ(n/4)0,(m/4) の時間発展をしたあとの状態をそれぞれ書き下せ。 次に、ある状態() = a|0,0) |0) + |1,1}10} (a, 8 は定数)を用意したところ、予期せぬ相互作 用により、1番目のスピンが微小回転してしまい、状態|)= VI-) + €)に変化し た。eの具体的な大きさは分からないが、状態|)をもとの状態」)に戻したい。 (5) 状態」)を問(4) のD2(T/4)ü,(T/4) によって時間発展させると、 Us(r/4)(r/4)) = \)) + i¢)10) という状態に変化した。1番目と2番目のスピンからなる状態|), o)をそれぞれ具体 的に書き下せ。 (6) 問(5) の状態に対し、3番目のスピンの測定をおこなうと、状態|)|1) と状態|o)|0)の いずれかが得られる。それぞれの状態に対してさらに個別にある演算子を作用させると、 微小回転量eの情報なしに状態 |) に戻せる。各状態について必要な演算子を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

電磁気学における時間反転についての説明なんですが、1枚目下の「これからわかるように〜」のところからE(x,t)→E'(x,t)になることと、磁場に対してはH(x,t)→H'(x,t)となる理由がよくわかりません どなたか説明お願いします🙇‍♂️🙇‍♂️🙇‍♂️

82 典禁変換と時間反転 4 @?7((の) 22(/9)) ②.23) がえられる. ただし, この場合力 が は時間にはなまによらないものとする。 (2.23) でパラメーター が を ! におきかえると g2ヶ/(/ 2 9 = 如⑦). ②.2?⑰ (2.22) と (2.24) とを比較すると, 粒子の軌道 の が Newton の運動方程式の 解であるならば, その運動の逆転 7⑰ もまた同じ運動方程式の解とたることが わかった. いいかえると, 力がなまに時間によらないときにたは, 粒子の運動は可 逆的である. この性質 は 電磁気学 においても 保証さんているであろうか. それを調べるた め, まず点電荷の速度を考えよう. LuO 9一の) の7(の の 一が) の/ であるから, 映画を逆転させると速度は みの6 、 gみの み 3が @.25) (2.26) と変化し。その符号が変わる. ゆえに, 電流密度は りーンーが(eー7の) ーー バー 7(一の)) ーーなーの) ニーが(%, の) 2 と交換するから。 (2.28) (のーーるの・ SIN Ampere-Maxwell の法則 9の rot 万ニーター DS 等目しょ うら. これからわかるように, 電場は

解決済み 回答数: 1