学年

教科

質問の種類

物理 大学生・専門学校生・社会人

一応考えてみたんですけど、 分からないので教えてください🙇‍♀️

③ 放射線に関する記述のうち、適切なものはどれか。 1. 放射線の人体への影響を表す単位は、ベクレルである。 2 放射線の人体への影響は、リンパ組織よりも脂肪組織の方が大きい。 3. α線放出核種の人体への影響は、体外被曝よりも体内被曝の方が大きい。 蛍光現象を利用する放射線検出器として、 例えばGM 係数管がある。 (39) Y線と物質との相互作用の記述のうち、 適切なものはどれか。 線の実体は、X線と同じ電子である。 2. 線の放射前後では、核種の原子番号は変化しないが質量数は減少する。 く 3.γ線がエネルギーの全てを電子に与えて、 消滅する現象をコンプトン効果という。 4 線がエネルギーの一部を電子に与えた時、 飛び出す電子を光電子という。 5. 高エネルギー (1,022MeV 以上)の線が、原子核近傍で電子と陽電子を生成する現象を電子対生成という。 光の性質に関する記述のうち、不適切なものはどれか。 2. 光の屈折率は、 短波長の光の方が長波長の光に比べて大きい。 ラマン散乱とは、入射光と異なるエネルギーの光が散乱される現象である。 3. ストークスラマン散乱では、散乱光の波長は入射光の波長よりも短い。 4. ストークスラマン散乱では、入射光の振動数よりも散乱光の振動数は小さい。 レーリー散乱は、入射光の波長に比べて物質の粒子径が大きい場合の光散乱である。 ④40 電磁波の吸収と分子のエネルギー準位間の遷移に関する次の記述のうち、不適切なものはどれか。 電子遷移に関係する電磁波は、 紫外線である。 2. マイクロ波を照射すると、 分子の回転準位の変化が起こる。 3. 吸収される電磁波の振動数と、エネルギー準位間の差には比例の関係がある。 4. 分子の振動、 回転、 電子遷移のうち、 電子遷移に伴って吸収される電磁波の波長が最も長い。 5. 分子が光を吸収した後、 三重項状態から基底状態へ移行する際に発せられる光をリン光という。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題を教えて頂けると助かります。 2枚目はそれまでの解答です。

III page-4 以下の文章の空欄に当てはまる数値または選択肢をマークせよ。 なお, 37 には 「① +, ② ③ 値が0なのでどちらでもない」 のいずれかを選択して解答し, 46 には 「①保存力である, ② 保存力でない」 のいずれかを選択して解答せよ。 単位が明記されていない物理量はすべてSI単位の 適切な基本単位もしくは基本単位の組み合わせによる組立単位を伴っているものとする。 質量2kgの物体が,軸上を運動している。 物体は時刻t=0において,r= =10の位置に静止して いたとする。 この物体は, ポテンシャルが であるような保存力F を受けている。 U(z)=4z2-48z +144, はじめに, 物体に保存力Fのみが作用している場合を考えよう。 この物体の運動方程式を書くと, dx dt2 37 38 (x- 39 となる。 X =æ- 39 と置いて, 運動方程式を書き換え, Xに対する一般解を求めると, A, Bを任 意の定数として X=z-39 = Acos 40t + B sin 40t, となり, 初期条件を用いることでAおよびBがA=41,B = 42 と求まる。この結果等から, この 物体は 43 <z 10の範囲を運動することがわかる。 また, x=9の位置を物体が通過する瞬間の 運動エネルギーはK= 44 45 である。 次に,Fに加えて, 物体に速度と逆方向に, 大きさが一定の力fが加わる場合を考える。ここで, |f| = 4とする。この力は46 この物体はt=0においての負方向に動き出した後,æ = 47の 位置で一旦停止し, 軸の正方向に向かって運動しだす。 物体があるところで一旦停止した場合, |F|>4であれば保存力Fによって物体は再度動き出し, F≤4であれば静止摩擦力によってその位 置に静止したまま動かないものとする。 物体はt=0で動き出した後に48 回だけ運動の方向を反転 させて軸上を行き来した後, 最終的にはヱ = 49 の位置で静止することになる。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

どなたかわかる方おられませんかね。

2. 電子の内部状態を考察するため、 次の交換関係を満たすエルミート演算子 S1, S2 S3 を考える: [SS2]=iS3 [S2,Sa]=iS1 [S3.Si]=iS2. (1) S2 = S} + S2 + S7は任意のSi (i=1,2,3) と可換であることを示せ。 (2) St:= S1 ±iS2(複合同順) とおくとき、 次の交換関係を示せ: [S3, St] = ±S土 [S+,S_] = 2.S3. (3) |+) を Ss+) = -+), S+|+) = 0 を満たす S3 の固有状態とする。 この状態 (+) は の固有状態 となることを示しその固有値を求めよ。 (4) |-> を |-) := S_+〉 で定義する。 この状態 |-> は S3との同時固有状態となることを示しそれ らの固有値を求めよ。 またS_|-> = 0 を証明せよ。 (5)以上のような演算子と状態の組が2種類あるような合成系を考える: {${",|a}(1)}== }i=1,2,3,a=11 {S(2),\3)(2)}i=1.2.3.83=±ただし、S^^) と S(2) は全て可換であるとする。この合成系における任意 の状態は、(a) (1) (3) (2) (0, 3=±) の4種類の基底ベクトルで表され、 合成されたスピン演算子 SiS(1) + S(2) (i=1,2,3) はこの合成系の状態に Sila)(1)(3)(2) = (${1/(a)(1)(3)(2) +a)(1)(S{(2)(3) (2)) のように作用する。 この合成系における S3, 32 の同時固有状態を上記の4種類の基底ベクトルの 線型結合で表し、それぞれの固有値を求めよ。 ただし規格化は行わなくてもよい。

回答募集中 回答数: 0
1/10