学年

教科

質問の種類

物理 大学生・専門学校生・社会人

大学古典力学の2質点系の問題です。 この問題の(II)で重心Gに対する相対位置ベクトルとして、解答下線部のようにおいていますが、何故こうなるのですか?分かる方がいましたら教えて下さい。

演習問題 96 2質点系の運動 (I) 右図のように xyz 座標をとる。 長さ 3r の質量の無視できる棒の両端に,それ ぞれ質量 2mmの質点を取り付けたも のが、その重心Gのまわりを一定の角 速度で回転している。 重力はy軸の負voy = の向きに働くものとし、この2質点系の y4 2m cart ro Wo m Vo. vosino- Pox VoCose ス 重心Gを, 原点から、時刻 t = 0 のときに 仰角6 (0<</2)初速度 Do = [Vox, Voy, 0]. (vo=||vo||) で投げ上げるものとする。 このとき、この回転しながら運動する 2質点系について、時刻におけ る (i) 全運動量P, (ii) 全運動エネルギーK, () 全角運動量Lを 求めよ。 また, (iv) この2質点系の位置エネルギーを求め、力学的 ネルギーが保存されることを示せ。 ただし, 2質点系の回転はxy 平面 内で起こるものとし、 空気抵抗は無視する。 ヒント! (i) 全運動量P=PG, (ii) 全運動エネルギーK=KG+K', (i) 全角運動量L=Lc+L' の公式通りに求める。 (iv) 位置エネルギーの基 準を zx平面にとる。 解答&解説 P=Pc=3mUG (ii) 2質 K = (KG ここ KG= 質量 重心 K質重Gがで対 G が, で 対 Vol (速 V01 G Toz こ Vo さ V02 -v=jo =[var-gt+v 以 G (3m) (i) 2質点系の全運動量Pは,全質量 3m が集中したと考えたときの重心Gの運動 量 Pc に等しい。 重心Gには,重力に よる加速度g = [0,-g, 0] が生じるので, その速度UGx成分は, Per PacOS (一定成分は, Voy = - gt+ vosino となる。 t = 0 のとき Poy= Posin より ∴Uc=rc=[vocose, -gt + vasin0, 0] ……① より, P=Pc=3mUc=3m [vocoso, gt + vesin 0, 0] となる。 K 162

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

分からない問題が多いので解説お願いします 明日テストなので早めに教えていただけると助かりますm(_ _)m

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長入 [m] と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長[m] を求めなさい。 また,節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ135の比 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 a fi B=2 r = -2 (MaLp Th) CM'L² 7-2 光に関する以下の各問いに答えなさい。 Iss 135 閉管の管楽器 を求めなさい。 (1) 空気中において, 屈折率 n =√3のガラス面に光が入射角 60° で進んだ場合の屈折角 [°]を求めなさい。 また, ガラス中の光の速さ v[m/s] を求めなさい。 ただし、空気中 の光速は, 真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x108 m/s (2) 屈折率 n = 1.5の液体の液面から 30cmに沈んでいる物体は,見かけ上では,液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45°であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

この問題は、高校の熱力学ですよね?

以下の問に答えよ. エネルギー等分配則と2原子分子気体の比熱に関する以下の文章の空欄[ア][ク]を埋めよ.[ウ]は語句,[カ]は数 値、それ以外は数式である. 気体定数をR (R=kBNA, kB : ボルツマン定数, NA:アボガドロ数),気体の絶対温度をTとする。 一辺の立方体(各辺はそれぞれx,y,z軸に平行) の容器の中に1モルの単原子分子理想気体を封入する. 質量mの1個の気体分 子がx軸の方向にある速度vで運動し壁面に弾性衝突するとする.この気体分子がx軸に垂直な片方の壁面に時間tの間に衝突 する回数は[ 1モルの分子が壁面に加える力を ]である. Fとして、その力積Ftは[イ] の平均のNA倍である. 壁面に加わる圧力が FIL2で表せることから, v2の平均をvとして (気体の圧力)×(気体の[ウ])=(気体の全質量)x vという関係式が得られる. 1モルの気体に関するボイル・シャル ルの法則から、12mvx^2=[エ]が得られる.これは気体分子1個の一つの軸方向への運動エネルギーの平均を意味している実 際にはx軸のほかにもy軸、z軸があり、12v2x^2+12+12²より +1+1が成り立つ.また,これら三つの軸は等価である か つまり三つの運動の向き (自由度) に対して等しいエネルギー [エ] があるため, 気体分子1個の平 ける. 均エネルギーは[オ]となる. このすべての力学的自由度に対して等しいエネルギー[] が分配されることを 「エネルギー 「等分配則」という. 1個の気体分子が時間tの間に壁面に与える力積は[ ]であり, ここで、 水素や酸素のような2原子分子を考えよう. 2原子分子は並進運動 (x軸、y軸, 2軸の各方向) 3, 回転運動が[カ], 振動が1の自由度を持つ。 振動の自由度を無視すると, エネルギー等分配則を用いて2原子分子1個の平均エネルギーは [キ], 1モルあたりの全エネルギーを考えると, 定積比熱は[ク] となる.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
1/3