学年

教科

質問の種類

物理 大学生・専門学校生・社会人

ドブロイ波長についてなんですが 波長の整数倍nと量子数nが一致する理由ってありますか?

標準問題 子の速さを1,真空のクーロンの法則の比例定数を ko とすると, 軌道半径rはe, m, ko, v との間にはたらく静電気力を向心力として, 等速円運動をしていると考える。このときの電 を用いてア=ア] と表せる。 軌道の周の長さ 2πrは, 量子条件より, 正の整数(量子数) 20原 124 A) 必147.〈水素原子モデル〉 次の文中の「ア]から「カに適切な数式や数値を入れよ。 ボーアは水素原子の構造に関する次のようなモデルを提唱した。 n, プランク定数hおよびm, uを用いて, 2πr=_イ」と表せる。この式は,ド·プロイに よって物質波の考えが導入されて以降,「2πrが定常状態の電子の波長(ド· プロイ波長)の 整数倍である」と考えられるようになった。これらの関係から, 量子数nの定常状態の軌道 半径r,はe, m, ko, h, n, π を用いて, グカ=ウ」と表すことができる。n番目の定常状 態にある軌道上の電子の全エネルギー Enは, 電子の運動エネルギーと,静電気力による位 置エネルギー(無限遠を基準とする)の和より, e, m, ko, h, n, π を用いて, En=エ と表される。このように, ボーアは水素原子の中で定常状態にある電子は,とびとびのエネ ルギー準位をもつという仮説をたてた。 ボーアの水素原子モデルにおいて, 電子が n=1 の定常状態にあるときを基底状態, n>2 の定常状態にあるときを励起状態という。量子数nの励起状態にある電子は,きわめて短い 時間で量子数n'("'<n)の状態に移り,その差のエネルギーを光子として放出する。このと き,放出される光子の波長入は振動数条件から, 真空中の光の速さcおよび e, m, ko, h, n, n', π を用いて, ー%=Dオ]と表される。 水素原子の示す線スペクトルの観測結果から得られた輝線の波長入は,リュードベリ定数 Rを用いてー=Rー)の規則性をもつことが示されていた。 ボーアの水素原子モデ ルによるリュードベリ定数の計算結果は, すでに知られていたリュードベリ定数の値と高い 精度で一致し,水素原子のスペクトルを理論的に説明することに成功した。リュードベリ定 数 R=1.1×10'/m とすると, 水素原子の線スペクトルのうち, 可視光線領域 (3.8~7.8×10-7m)の輝線群の2番目に長い波長は, 有効数字2桁でカ 1 1 2 n Im と計算できる。 [20 九州工大 改]

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

(4.39)の計算が下の説明を読んでもわかりません どなたか教えてください

参照)は, っれるテク 4.3 LSZ 簡約公式 77 .8 do A(p)) = Jd°p]2 -2元6(p -Vp°+ m° 0)(2元)°8°(p- p) 順序とし Z 7(2x)2E。 を得る。ここで,p° = \p° + m' = Ep, <0|¢(0) |p; m°> = \Z/(2x)°2E, ieiw max(z.…, z) 点グリー くp;m°| 0+ ie ((3.29)参照)を用いた。 ここまで来れば,pおよび ω積分は(デルタ関数があるので)簡単に実行でき エn)]|0> る。積分を実行した後に,pf に関して質量殻上の極限(→m? すなわち →、pf + m°)を取ると, A(pi)に pf-m° の極が現れる。すなわち, 4.37) (2元)/Z eip-/+ m)max (x). ….) A(p)T(2x)2E, -/pi+m? + ie (エn)] = くp;m'| 完全系 パ→、所+ m? i/Z R- m' + ie 『pi 責の中で V(2x)°2E»× くp;m°| P1 皆段関数 (4.39) の寄与 以外の つも行 m?> = である。最後の行では, 分母分子に pf+\pf+ m? を掛けて変形した。ここで 興味があるのは質量殻上(pR= m?, pf > 0) での極なので, 最後の行では, f = m° の極以外の飛は Ep, =Vpi + m? におきかえた.また,分母の 2/p + m?e を改めてeとおきなおした.これは, sが正の微小量であればよ いので,正当化される。 上の結果から,次の2つの重要な帰結を得る。1つ目は期待されたように,質 ら次の因 量殻上では,運動量空間でのグリーン関数から自由粒子のファインマン伝播関数 として pf= m° の極 (p-m'+ie) !が現れることである。2つ目は, 質量殻 上では波動関数のくりこみ定数、Z が現れ,それは散乱行列(4.33) での1//Z と相殺するという事実である. これは,波動関数のくりこみ定数Zが物理的な量 ではなく,観測量からは消え去るべき量であることを示唆する。(この点に関す る詳しい議論は,17.3.3項を参照,) 4.38) 4.3.6 LSZ簡約公式に対するコメント 首を終える前に, LSZ 簡約公式についてコメントをいくつかしておこう. まず, LSZ 簡約公式を導出する際に, 場φ(z)の相互作用に関する情報は必要 なかったことに注意しておく. つまり,相互作用の情報は, T積のグリーン関数 G(m+n) てる1粒 Um, I1, …, In)の中に含まれている.また, LSZ簡約公式は本 p).1 を 質的にグリーン関数のみで書かれているので, 散乱に関する情報はすべてグリー

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーの部分はどのように出していますか?

式)Ap = 4TGP(この場合 φ<0である)を再現するように要請すれば, Kの値は が得られる。そこで, (4.31) 式がニュートン理論での重力場の方程式 (ポアソン方程 表5に開連 65 の重要な僕 Ruミ R°, uav =1" μv,a - T®, * HQ,u + T" uvT®ay -T' uaT® vm (4.25) となる。特にその 00 成分は Roo = T°00,a -T°oa,0 + T"ooTe ay - T"oaT®og. (4.26) ここで,3.2 節と同じく弱い重力場の場合: (4.2 9uv = 7uv + huv, hul <1 (4.27) なくとも e) から自 を考えると,T~O(h) なので, 最低次では Roo ~T"00,a-1"0a,0 r'o0, Ap. (4.28) (3.25) 式 っきり、Roo は,ニュートン理論における重力ポテンシャルのラプラシアンを与える項 (4.23) になっている。 これに対応する物質場を考えるために, まず (4.21) 式の両辺のトレースをとると (4.24) (左辺) = R-; 1 × 4R = -R= (右辺) =D «T. (4.29) 2 したがって, 一場合に 1 Rw =KTuw + 59uu R =x(Tuw - 59muT) て, そ ではな 3 (。+で) ) 0 (oo + E Ti) (4.30) Roo =K(Too go0 力場を のなか 事に満 よう。 2 i=1 ~-1 2-Too (4.6) 式を用いて,非相対論的完全流体 (lo<1かつp<pが成り立つ)に対して (4.30) 式の右辺を具体的に計算すると (4.31) K K K Roo ~ (+ po° + 3p) ~(o+3p) ~50 ーンソ (4.32) K= 8TG っし実 マ一蔵 (4.33) 1 G = Rw 29uu R= 8mGTu 12 った ためcを入れた場合の次元を考えておくと

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

下の問題をできるだけ教えてほしいです。雑ですみません。 ホントに何も分からなくて困ってます。お願いします。

【問 1】 点 (zz) における電場が,E = 』十2j で与えられている. この電場を図示せよ. ただし xy 平面上に限定して描く いう0 【問 2】 電荷の分布が以下のような場合, それによって生じる電場分布の形を, 文章と図を用いて答えよ. (1) 半径 。 の球面上に, 一様な電荷密度で分布する. (2) 無限に広い平面上に, 一様な電荷密度で分布する. (3) 無限に長い 半径 。 の円柱内に, 一様な電荷密度で分布する. 【問 3】 0 <ぁ<o を定数とする. 原点を中心とする半径 。 の球体内の, 半径り<ヶ<o の範囲に電荷が電荷密度 ヵ で一様に 分布している. この電荷によって生じる電場 E を求めたい. (1) 電荷の対称性を用いる範囲で, E の分布はどのようになるか, 文章と図で説明せよ. (2) ガウスの法則 pd4 = = な Eo における面 ⑤ (ガウス面) はどのようなものを選べばよいか. 簡単に理由をつけて答えよ. (3) ガウスの法則における電荷項 0j。はどのようになるか答えよ. (4) ガウスの法則を用いて, 原点からの距離 テ における電場の大きさ 万 を求めよ. 【問4】 た= 間 とおく (< 軸方向の基本単位ベクトル gk と混同しないように). 一様な電場 E」 = 2V2i が存在している空 間の原点に, 電荷 go三1 を固定した. G) 点5, *う における電場 EE を求めよ. (⑫) 点(0. 還 3 における電場の大きさ 万 を求めよ. (3) 束 (0. な) に。 電荷9ニー2 を置くとき。gに作用する力F と, その大きさ が を求めよ. 【問 5】 ガウスの法則を用いて, 電荷分布から電場を求める際に考えなければいけないことは何か. 重要と思われることを3点 答えよ-

解決済み 回答数: 1
1/2