学年

教科

質問の種類

物理 大学生・専門学校生・社会人

全く手が付かないです。教えていただけると幸いです。

1. (1) プランク定数丸,真空中の光速c,ニュートン定数Gだけを組み合わせて,エネルギー,質量。 長さ,時間の次元を持つ定数を構成せよ.なおこれらはそれぞれ,「プランクエネルギー」, 「プランク質量」,「プランク長さ」,「ブランク時間」と呼ばれ,宇宙誕生の際や量子重力理 論を考える上で重要な役割を果たすパラメータであると信じられている。 (2) 上で求めた4つの定数の値を SI標準単位で求めよ、有効数字2ヶタで答えること。 注:解答自体はネット検索等で簡単に見つけられると思いますので,考え方や計算過程をきち んと示すこと、答のみ書いたレポートは評価しません。] 2.2017年2月に, NASA が地球から約39光年離れた恒星系「トラピスト1」に地球に似た新しい7 個の系外惑星を発見したと発表し,大きな話題になった。地球からトラビスト1への簡単な宇宙 旅行のモデルを考えてみよう。 宇宙船が地球からトラピスト1まで光速の 80 %の速さで等速度運動すると仮定し!,以下の問 に解答せよ、ただし,話を単純化するため,地球とトラビスト1は相対速度ゼロの二つの慣性系 であるとする。 (1) 地球上の観測者から見ると,地球とトラピスト1は静止しており,運動しているのは宇宙船 である。この観点から,宇宙船がトラビスト1に到達するまでに要する地球上での時間と 宇宙船内での時間 (単位は yr (年))を求めよ。解答は有効数字2ケタとする。 (2) 宇宙船内の観測者から見ると,宇宙船は静止しており,運動しているのは地球とトラピスト 1である。この観点では,(1) で求めた宇宙船内での時間はどのように説明できるか? 【(2) のヒント] 宇宙船内の観測者が測る地球とトラピスト1の距離はどうなるだろうか? 3.重力は他の3つの力に比べて極端に弱いにも関わらず,天体の運行などの宇宙規模の現象に対して は支配的な役割を果たす。その理由を考察し簡潔に述べよ。 4. 湯川秀樹の中間子論によると,相互作用の到達距離はその相互作用を媒介する素粒子の換算コンプ トン波長程度と見積もられる。この考え方を弱い力に適用してみた場合,弱い力の到達距離は どの程度と見積もられるか考察せよ。ただし、弱い力を媒介するボース粒子(ウィークボソン Wキ,z°) の質量は,W*が約 82GeV, z° が約93GEVであることが実験によって判明している 弱い力の到達距離は授業中に紹介しているので,きちんと計算を書くこと、] 2 「つまり,宇宙船の発着に伴う加速·減速や方向転換の加速度などはすべて無視します。 2粒子の換算コンプトン波長の定義は、mをその質量として、入=ー 媒介する光子は質量なので、換算コンプトン波長は無限大となる。ごれは電磁力が長距離力(到達距離 = 無限大)である ことを表している。同じ理由で重力は長距離力であるので、(未発見だが)重力子も零質量であると考えられている。しかし ながら,強い力を媒介するグルーオンも零質量であることがわかっているが、授業で述べたように強い力は短距離力であっ て、原子核の大きさくらいしか力が届かない。これがどうしてかは難しい話なので、きちんと知りたい人は,量子力学を学 んだ後、大学院で QCDを勉強して下さい。 (自然単位系では、A=)例えば,電磁力を

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

マーカーの部分がいまいちわかりません、教えてください🙇‍♂️

(2) 2状態系の状態間の転移 ここで(1)で与えた運動法則にもとづいて, 古典力学ではみられない量子力 学特有の現象である状態間の転移について説明しておこう. いまある体系,例 えば水素原子を考えて,その系のハミルトニアンを自(0)とする.はじめこの 系が白(0)のある固有状態にあり,そこに外部からの何らかの作用が加えられ ると,その系は他の固有状態に転移する. このとき,古典力学の場合には, 系 の初状態から終状態への転移の途中の過程を精細に追跡してゆくことができる が,量子力学の場合には, 重ね合わせの原理によってそのような追跡は不可能 であり, われわれの知りえるのは, それらの状態間の転移確率だけである.い ま,外部の作用をポテンシャル立で記述すると, これを含めた全系のハミル トニアンは自=自(0)+立で与えられる.そして,このハミルトニアン自で記 述される全系の状態ベクトル |(t)>の時間的変動は,運動方程式(5.2)によ って記述される. (5.4)では, I(は)>を自の固有状態で展開したが, ここで はH(0)の固有べクトル|n>を用いて 1p(t)>= EIn>a,(t) (5.14) n と展開する.その理由は, いまの目的が状態 ¢(t)>において, 系をH(0)の固 有状態| m>に発見する確率 |am (t)12を求めることにあるからである.(5.14)

未解決 回答数: 1
物理 大学生・専門学校生・社会人

F^μγがマーカーで引いたところのようになるというのがよくわかりません どなたか教えてください🙇‍♂️

て<運動方程式 15.4 電場と磁場の統一: フ ー ゲグジージツアル 前項では3次元空間で定義されたマッ クスウェル応 へ拡張することで電磁場のエネルキ\ー . 運動量テン が ここでは電磁場の4元ポテンシャル(4) カテンソルを4炊元時補 レル/縛 を導入したのだ (@/c 4)T から直接的に を定式化する. これによって, 度力は電場と克場統一した4 次元時で しい形式に整理される. まず (4) の微分?2) によって誘導されるぅ 階の反対称 レウォンシクルレ ルーの4リー 4。 (1.91) を定義する. これを電磁場のテンソル (electromagnetic elq tensor) あるいは ファラデーテンツル (Faraday tensor) という. 電磁場の定義式 (1.38)-(1.39), すなわち玉ニ ー(Vの上の4), ーV x 4 を用いて成分を書き下すと 0 1/c >/c 5/c 六際の)半ー証2 ーpg5/c 3 0 。ぢ: ー85/@ 王の二流 0 (gp)ー (1.92) 逆に言うと, 3 次元ベクトル戸と万はファラデーテンソル 瓦, の六つの成分 を取り出して書いたものだと「定義] することができる. ファラデーテンツソルを反変成分で表現すると, ツーのパージイ =謙交Eg7 0 一品/c 一玉/c fs/c 章GE | no 太5/c 3 0 ームBュ 5/c -9> 0 】 (1.25)-(1.26) を用いて計算すると, に 隔の (1.94) 逆たに言う と。 (1.94) がマックスウェルの方程式の後半2 式 (1.25)-(1.26) に相当 する式だと考えることができる 0) 2.3 館で定義する外微分である

未解決 回答数: 1
物理 大学生・専門学校生・社会人

至急お願いします 本当にお願いします

[軸 [1・芋選択者用問題】(配京 33点) ゞざのシと ンダーと浴らかに動くピストンによって, 1 モルの単原子分子理想 気体(以下, 気体とよぶ)を閉じ込めておく。シリンダーの中にはヒーターHがあり, 遠隔操作できるようになっている。シリンダーとビストンは断熱材でつく ちれており, た, シリンダーの厚さおよびヒーター 耳の体積 重き, 熱容量は無視する。大気圧 を 記、重力加速度の大きるを の, 気体定数を 尽 として, 以下の〔I), 【) の問に答え よ。 シリンター 図1 【1) 茹1のように, シリンダーの底面を水平を床上に置き、シリングーとビストンを 鉛直に立てたとき、ビストンの上面と水平な天井との距離は たであり9, ビストン の下面とシリンダーの識面との距離も / であった。このとき, 気体の圧力は2肪 絶対温度は 7。 であった。この状趣を状態1 とよぶ。 関1 ビストンの質量を Sg を用いて求めよ。 -問4 2を R、S, た。尺を用いて求めよ。 ヒーター耳をしばらくの間作動きせたところ, ビストンはゆってりと上昇し、ビ ストンの上面が天井た挟する直前で止まった。との状態を状態2 とよぶ。 間3 状態2における気体の圧力 肪 を 肪を用いて求めよ。また, 状態2における気 体の絶対温度 7? を 7。 を用いて求めよ。 間4 状下1から状態2への変化において, 気体の内部エネルギーの変化 4 とと ーター HHから生した熱量 の,。 をそれぞれ 双。 76 を用ぃて求めよ。 さらにヒーター是をしばらくの間作動きさせ @, と同じだけの熱量を気体に加え た。 その壮果, 気体の状態は状態 3 となった。 問$ 状態3における気体の絶対温度 7。 を 76 を用いて求めよ。また, 状態3 ける気体の圧力 用 を 用 を用いて求めよ。 5 (TI) 図2のように, シリンダーを液体の中に鉛直に入れたとこ から測った溢面の高きがんとなり, ビストンの上面と天寿と た。 このとき, 気体の状表は状態 1 と同じであっ

回答募集中 回答数: 0