学年

教科

質問の種類

物理 大学生・専門学校生・社会人

空間座標の反転ではどうして(2.16)と(2.17)が成り立つのでしょうか

@y/(の : の / | 2 りー PO 2.15) をうる- 2.14) と (2②.15) とを比較すると, 右手系 と左手系とでは, 右辺 の Lorentz の力の第2 項の符生に違いがある. この結論は他の成分についてもゃ同様 でぁる. したがって, Lorentz の力の作用のもとにおける京電荷の 運動方程式 は。 空間座標反転のもとで共変的でないと考えるかもしれない. しかし, 上の謙 論は (2.13) の仮定にや とづくもので, 電場については 婦(%/。のニー(*, の (2.16) でよいが, 磁場の変換性は (2.13) のかわりに (*/ の ー P(*,の 2.17 であたえられる. (2.16) と (2. 17) の変換性のもとでは, 運動方程式の *" 成分は 2 gy/ gs/ ーーの ー 6。(ダ(の 9+g ッ し(7の, の一 0 ぢし(7(の), j (2.18) となって, これは (2.14) とまったく同形である. (2.17) の型の変換をするベク トルを軸性ベクトル (axial vector) といい, (2.16) のよう な普通の変換をするべ クトルを極性ベクトル (polar vector) という. たとえば, 二つの極性ベクトルの ベクトル積は軸性ペクトルである. 磁場はペクトル場であるが, 普通のベクトル 場ではなくて, 軸性ベクトル場である・ 2②.16) と (2.17) の変換を用いるとすぐに, 左手系で も右手系のそれとまった く同形の Maxwell の方程式 2g(*/ 7 rot' 及(*。 の十 =0 の/(%/,7 sa 5 ro (W。 のーー uo00 diy の(*, のニの(@5 div7 (% の三 がなりたつことを示せる. この証明は読 人 先朋忠相」

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

こちらの1-2を解いていただけないでしょうか

|R1-1:重力下のバネ 四図1 のように, ばね定数たをもつ自然長/ の軽いばねを天井からつり下げ, 質必太 を もつ小球を取り付けた, | 陳力加連度の大きさを り とする (⑪) 天非を原点とする2つの護標系 ヵ, z について, 運動方机式をそれぞれ求めよ ⑫) 静此状態のとき小球の庫標 zo、so を求めよ. ⑬) 運動方穏式を解き, 小球の振動の周期を求めよ R1-2:つりおるし 図2 のように、軽い滑車にかけた凡に荷物をつり下げ, 綱の両端を引っ張る. 消車間の距離を /. それらの中忌 につり下げた荷物の質量を 訪、網と水平のなす角を 9 とする. 重力加速度の大ききを 7とす (1) 静此状態のとき,綱の張力7 を求めよ (2) 集物がないときの綱の位置からの荷物の距離を * とするふと0のの関係式を求めよ ⑬) 荷物が備かに動き, 振動を始めた. 静止状態で綱と水平のなす角を のの.そこからの微小なずれを の(|の| を |陶) 綱と水平のなす角をの=の二の とする. 荷物の運動方租式. 微小振動の周期を求めょ ラ る ーーーーーー んーーーーー R計 の Fig.1 二力ドドのバネ eo 角敵数 in の.cosのの7 = 0の周りの Taylor 大則は ) 1 っい (rjが ! , gin7 m の の の ーの90 1 加 「 2 誠+ ⑪ 1 1 (=DR 。。 coeのml の+ ーーの - 2 3 2 | と {31 (②) 内 とをる2 が二分小さい |の| を 1 のときm 大きくなるにつれで,940T1 の40 はどんどん小きてなる、 このことから、高次め項 (w@ 赤きな項) を大肌に無究して, ainの > 7.com0 < 1と近似する (問題文の記号と合わせればJainの のcowの 1としで解ゆ、 3 | と6 はの に比べ大いため, sin 6,com 負け近似できない.). り吉細を根み角を知りたいまきajnの0-の/lcow0 1ー 3/2| と商次の頂を取り入れるこまで科人の博度を トげるき お4きき チ 守

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

こちらの1-2を解いていただけないでしょうか

|R1-1:重力下のバネ 四図1 のように, ばね定数たをもつ自然長/ の軽いばねを天井からつり下げ, 質必太 を もつ小球を取り付けた, | 陳力加連度の大きさを り とする (⑪) 天非を原点とする2つの護標系 ヵ, z について, 運動方机式をそれぞれ求めよ ⑫) 静此状態のとき小球の庫標 zo、so を求めよ. ⑬) 運動方穏式を解き, 小球の振動の周期を求めよ R1-2:つりおるし 図2 のように、軽い滑車にかけた凡に荷物をつり下げ, 綱の両端を引っ張る. 消車間の距離を /. それらの中忌 につり下げた荷物の質量を 訪、網と水平のなす角を 9 とする. 重力加速度の大ききを 7とす (1) 静此状態のとき,綱の張力7 を求めよ (2) 集物がないときの綱の位置からの荷物の距離を * とするふと0のの関係式を求めよ ⑬) 荷物が備かに動き, 振動を始めた. 静止状態で綱と水平のなす角を のの.そこからの微小なずれを の(|の| を |陶) 綱と水平のなす角をの=の二の とする. 荷物の運動方租式. 微小振動の周期を求めょ ラ る ーーーーーー んーーーーー R計 の Fig.1 二力ドドのバネ eo 角敵数 in の.cosのの7 = 0の周りの Taylor 大則は ) 1 っい (rjが ! , gin7 m の の の ーの90 1 加 「 2 誠+ ⑪ 1 1 (=DR 。。 coeのml の+ ーーの - 2 3 2 | と {31 (②) 内 とをる2 が二分小さい |の| を 1 のときm 大きくなるにつれで,940T1 の40 はどんどん小きてなる、 このことから、高次め項 (w@ 赤きな項) を大肌に無究して, ainの > 7.com0 < 1と近似する (問題文の記号と合わせればJainの のcowの 1としで解ゆ、 3 | と6 はの に比べ大いため, sin 6,com 負け近似できない.). り吉細を根み角を知りたいまきajnの0-の/lcow0 1ー 3/2| と商次の頂を取り入れるこまで科人の博度を トげるき お4きき チ 守

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

【力学】起潮ポテンシャルの導出の問題について、2.1の式変形及びマクローリン展開で詰まってしまいました。方針を思いつかないため、お力添えいただけるとありがたいです。 追:|r-R|について、1/R * √( (r/R)^2 -2(r/R)cosθ +1 )というような変形... 続きを読む

問題 2 湖汐は月や太陽の引力によって引き起とされる. いま, 地球, 月, 地表の海水 (ここでは海水を単 位質量を持つ質点として扱う) の 3 体からなる系を考える (図 2).、地球の中心から質点および月までの位 置ベクトルをそれぞれ7, 万 とする. また, 月の質量を mm とする. このとき, 質点に働く引力のボテン 1 r-太 シャルはのーー (一本 証 ) とでる (ではの 2.1 テー月ソテー刀7 = V72 本 p 一2r7Pcos6 であることに注意して, Vr(r) を7/旭の 2 次の項 っ ン展間し。 ーーの" (acosz0 1) となることを確認せよ (これを息潮ポテン シャルという). なお, 計算に現れる定数項は直後に考える起潮力に関係しないので無視してよい. 2.2 寺力の分直成分6 成分) 用 (9 成分) は上記の起湖ボテンシャルを用いて次のよう与え らちれる:所ニーーー、 邦三 で9 起潮力を計算するとともに, 地表での起潮力の分布の概略 までマクロー を図示せよ.

解決済み 回答数: 1