学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問1~問3です。答えだけでいいので急ぎでお願いします。

- 課題 - 【問1】次の文章について、空欄に当てはまる適切な言葉や数式を答えよ 正の電荷 +2qと負の電荷 -q が、 それぞれ、点Aと点Bに置かれている。 各電荷はq>0だと仮定する。 また、AB間の距離をaとおく。直線 ABを含む 直線上において、これら2つの電場の強さがゼロになる点を求めたい。 まず、座標系を設定する。点 A を原点とし、A→B を正の方向と決める。直線 AB を含む軸をx軸とおい て、原点からの座標位置をxであらわす。 上の座標系において、1C の電荷をx座標上に置くとき、この電荷が受ける力の向きを各電荷の正負から 考える。まず、この電荷をx<0の位置に置くとき、この電荷が受ける力の方向は( ① )であり、この電荷を 0<x<aの位置に置くとき、力の方向は(2 )、x>aの位置に置くとき、力の方向は( ③ )だから、電 場の強さがゼロになる点は( 4)の範囲にある。 次に、電場の強さ(=D大きさ)を具体的に計算する。電場の強さを、クーロンの法則を用いて、 「位置」と「距 離」の違いに注意して計算すると、正電荷 +2q が位置xに作る電場の強さは( ⑤ )で、負電荷 -qが位 置xに作る電場の強さは( 6:)である。ただし、クーロンの法則における比例定数をんとおく。 以上より、電場の強さがゼロになる点は、x=(7)で求められる。 A +2q) -9 → X a *y JA (9a) 【問2】 次の文章について、空欄に当てはまる適切な言葉や数式を答えよ 図の上うに 名:TのEさが

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーの部分はどのように出していますか?

式)Ap = 4TGP(この場合 φ<0である)を再現するように要請すれば, Kの値は が得られる。そこで, (4.31) 式がニュートン理論での重力場の方程式 (ポアソン方程 表5に開連 65 の重要な僕 Ruミ R°, uav =1" μv,a - T®, * HQ,u + T" uvT®ay -T' uaT® vm (4.25) となる。特にその 00 成分は Roo = T°00,a -T°oa,0 + T"ooTe ay - T"oaT®og. (4.26) ここで,3.2 節と同じく弱い重力場の場合: (4.2 9uv = 7uv + huv, hul <1 (4.27) なくとも e) から自 を考えると,T~O(h) なので, 最低次では Roo ~T"00,a-1"0a,0 r'o0, Ap. (4.28) (3.25) 式 っきり、Roo は,ニュートン理論における重力ポテンシャルのラプラシアンを与える項 (4.23) になっている。 これに対応する物質場を考えるために, まず (4.21) 式の両辺のトレースをとると (4.24) (左辺) = R-; 1 × 4R = -R= (右辺) =D «T. (4.29) 2 したがって, 一場合に 1 Rw =KTuw + 59uu R =x(Tuw - 59muT) て, そ ではな 3 (。+で) ) 0 (oo + E Ti) (4.30) Roo =K(Too go0 力場を のなか 事に満 よう。 2 i=1 ~-1 2-Too (4.6) 式を用いて,非相対論的完全流体 (lo<1かつp<pが成り立つ)に対して (4.30) 式の右辺を具体的に計算すると (4.31) K K K Roo ~ (+ po° + 3p) ~(o+3p) ~50 ーンソ (4.32) K= 8TG っし実 マ一蔵 (4.33) 1 G = Rw 29uu R= 8mGTu 12 った ためcを入れた場合の次元を考えておくと

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

これの(2)のdが分かりません、一応aから合ってるか見てもらえると嬉しいです🙇‍♀️dは、考えてみましたが自信ないです、また、概形もどう書けばいいか分かりません…。よろしくお願い致します

2. (1) 質量の無視できる長さ!/2 の剛体棒に, 質量 M, 長さ 1/2 の一様な剛体棒を取り付け, 二つの剛体棒が同じ方向を向 くように固定した。 質量の無視できる剛体棒のもう一方の 端を支点として鉛直面内で振動させる。 (右図上). 剛体棒 が鉛直下方となす角を0,重力カ加速度の大きさをgとして 以下の問いに答えよ。 1/2 a 支点のまわりの慣性モーメント, およびトルクを求めよ。 b. 0 の運動方程式を与えよ。 「M c. 0<1のとき, 振動の周期を求めよ。 (2)(1) に加えて, 支点から!/4の位置に質量 M の質点を取り 付けた(右図下). 1/4 M a. 剛体全体(質量を無視できる剛体棒、, 質量 M の剛体棒, 質量 M の質点) の支点のまわりの慣性モーメントを求 めよ。 0 /2 b. 剛体全体のエネルギー EをM,l,9,6,6のうち必要なも のを使って表せ。 c. つりあいの位置 (@= 0) で静止している剛体棒の下端 をたたいたところ, 剛体全体は支点のまわりを初期角速 度 n で回転し始めた. 剛体全体が支点のまわりを一回 転するために g が満たすべき条件を求めよ。 M d. 支点のまわりを一回転した剛体全体が鉛直下方(0=D0) を通過する瞬間に, 支点が外れて落下し始めた。 その後。 剛体全体はどのように運動すると考えられるか, 簡潔に 述べよ。また, 解答用紙に @%3D0の位置にある剛体全体 を描き,支点が外れた後の剛体全体の重心の軌跡(概形 でよい)を図示せよ。 裏面に続く。 に 。

解決済み 回答数: 1