学年

教科

質問の種類

物理 大学生・専門学校生・社会人

1から5の問題が全く持ってわかりません 明日までに解かなければならないので解説してくれる方がいたら嬉しいです

1. 次の式の両辺の各項の次元を調べよ。 但し、は長さの次元、tは時間の次元、mは質量の次元であり、 v を 速度、gを重力加速度、 f を力とする。 力の次元は[f]=MLT-2。 (10) (a) f=mg-ku となるときのの次元を求めよ。 このkを用いた式: mg k の中身の次元を求めよ。 (b) (a) と同じょを用いた式: 4.2 次元極座標の速度表示 問題 2. ある物体が2次元上を運動し、そのx,y座標が時間tの関数として、 r = Acos(wt+a), y = Asin(wt+a) で与えられている。このとき、この物体の速度ベクトルと加速度ベクトルを時間tの関数として求めよ。 (20) 5.2 次元極座標の加速度表示 合には、 der dea と dt d.t 3. 式 (11), (12) の両辺を時間で微分することにより、 去する。) この計算結果でわかる通り、 極座標の基本ベクトルは時間とともに変化する。 (20) v² mg k T = dr dr dt dt do e を導け。 この式でわかるように、 速度の方向成分がの時 dt dr dt 間微分なのに対し、 0 方向成分は、 半径 × 角速度となっている。 等速円運動の場合には、 = 0 なので、 v=rw になる。 (20) m --t t+ (em-1) の次元。 der dt2 -er + r 問題 d²r dt2 になることを示せ。 (30) -t 1-em の次元およびe を計算し、er と e で表せ。 (ex, ey を消 do dr do d²0 r (1) ² } e₁ + {2 d d + ² } er dt dt dt dt2 ee を導け。 等速円運動の場

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

電磁気学の問題になります。 問3以降全く分かりません。教えていただけると助かります。

真空中で円周にそって流れる電流 (円電流) がつくる磁場, および, 円電流と等価な磁気モーメントについて 考える. 一般に,真空中で電流素片Ⅰds が距離 R だけ離れた点につくる磁束密度 dB は dB = Ho Ids x 4π R² で与えられる (ビオサバールの法則) ここで, Mo は真空の透磁率,Iは電流の大きさ, ds は電流の方向に とった微小変位ベクトル, hは電流素片からその点に向かう方向の単位ベクトルである. (1) 下図 (a) に示されるように、座標原点を中心とする π-y平面上の半径aの円周にそって図に示された方 向に電流Iが流れているとき, 点A(0, 0, h) における磁束密度の向きと大きさを求めよ. ただし, ん > 0 とする. (2) 下図(b)に示されるように、座標原点におかれた大きさがpでz軸方向の磁気モーメントが,点A(0, 0, h) に作る磁束密度の向きと大きさを求めよ。 ただし, 磁気モーメントとは正負の磁荷の対が微小な距離だ け離れているものであるが, んはその距離に比べて十分大きいとする. 問 (1) と問 (2) の結果より, 半径aの円電流Iは,十分遠方からみると, 大きさがHoTa²Iの磁気モーメント と等価であると考えられる.このことを利用して,次に, 真空中で円運動する荷電粒子について考える。 ただ し, 古典力学の範囲で考えることとし, この円運動による電磁波の輻射は無視できるとする. (3) 座標の原点に電荷g (> 0) が固定されている。 下図 (c) に示すように、質量がmで-gの電荷を持つ質 点が, g-y平面上で原点の周りを図に示す方向に一定の角速度で円運動している. この円の半径をと する. この質点の円運動を円電流とみなすことにより, 十分遠方からみた等価な磁気モーメントの向き と大きさ on を求めよ。 ただし, 真空の誘電率を e とする. (4) 下図 (d) に示すように、 磁束密度が B (> 0) で軸方向の一様な弱い磁場中で、 問 (3) と同じ問題を考 える ただし, 質点の円運動の半径は問 (3) と同じと仮定する. このときの十分遠方からみた等価磁 気モーメントの大きさを Pen とし, Apo PeB-Poo をBの1次までの近似式として求めよ. 2 •A(0,0,h) Z •A(0,0,h) y Pr (b) C 2 dan dal g 'T

回答募集中 回答数: 0