学年

教科

質問の種類

物理 大学生・専門学校生・社会人

ここの5-1なのですが、 直列ではなく並列になるというところがわからないので わかる方がいらっしゃいましたら教えて欲しいです

A真空中において, 面積S(m°] の2枚の極板を間 隔d(m] 離して置いて, 起電力V[V] の電池につな ぎ、スイッチSを閉じて充電した。 真空の誘電率を Eo[F/m] とし、 極板間の電場は一様とする。 (1) コンデンサーの電気量, 極板間の電場の強さ, 静 電エネルギーをそれぞれ求めよ。 (2) スイッチを閉じたまま, 極板間隔を 2d[m] にし た。電気量と電場の強さを求めよ。 (3) 極板間隔をもとのdに戻し,スイッチを開いてから, 間隔を2dにした。 極板 間の電圧を求めよ。 また, 間隔を広げる際に必要な外力の仕事を求めよ。 (4)続いて, スイッチは開いたまま, 極板間の右半分に厚さ d, 比誘電率 e, の誘 電体を挿入した。電気容量と電圧を求めよ。 52F と3Fのコンデンサーをそれぞれ200 V, 300Vで充電し, 図のようにつなぎ, スイッチSを閉 2F S 15 じた。 200 V (1) コンデンサーの電圧はいくらになるか。 3F (2) 2uF のコンデンサーで左側の極板の電気量は 何uC か。 300 V (3) 続いて,2μF のコンデンサーの極板間隔を2倍 にした。 コンデンサーの電圧はいくらになるか。 6 帯電していないコンデンサー C. と C2, 起電力V の電池を図のように接続し, スイッチSを閉じる。 C, の電気容量はCで, 極板間隔はdとする。 Ca は 3 Cと同形の極板からなり, 極板間隔は である。 2 ) Caの電気容量をCを用いて表せ。 2 C,と Ca の合成容量をCを用いて表せ。 3 C,の電気量と電圧を求めよ。 スイッチを開き, C。の極板間(図中の点線部)に厚さdの金属板を挿入する。 C,の電圧を求めよ。 いて, C, と Ca を回路から切り離し, 正·負の極性を合わせて並列につない だときの電圧を求めよ。 279

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0