学年

教科

質問の種類

物理 大学生・専門学校生・社会人

解き方が全くわかりません。どなたか解いてくださる方いませんか?

[1] 力 (F)と電力 (仕事率) (P) の次元式を物理式から求めよ。 また, キャパシタンスCと抵抗Rの積CRの次元を物理式(Q=CV, V=RI) を利用して求めよ F: P: CR: [2] a-b間に100√2 sin 300 [V] の電圧を加えた時の各電圧計 [3] 銅線の直径D、長さL、抵抗Rを測定して銅線の抵抗率をpTD2R/4L なる の値を求めよ。 ただし、 正弦波の波形率K=1.11とする。 関係式から求める場合, D,L,Rの測定誤差がすべて2%のときのの最大誤差 を求めよ。 ao bo Vm V1: 0 :最大誤差 [4] 下図の方形波電圧を可動コイル形電圧計で測定したら100Vのとき, (1) 整流形電圧計と(2) 熱電形電圧計で測定するとそれぞれ何Vを指示するか。 ただし、正弦波の波形率K=1.11 とする。 T/2 IA F ra T 3T/2 2T [5] 2個の直流電圧計V1 (最大目盛150V, 内部抵抗20kΩ)とV2 (最大目盛300V,内部抵抗30kΩ)を直列に接続して最大何Vまで測れるか。 M V2: 答: [6] 定格値=10mA, 内部抵抗RA=450Ωの電流計に下図のように抵抗を接続し, 端子(1)のとき100mA, 端子(2)のとき1Aの電流を測定するために は、抵抗をいくらにすれば良いか Rp (2) d RA I V1,V2: 可動コイル形 V3:整流形 「b V3: (1)8 RV t [7] 電流力計形計器の可動コイル(M)と固定コイル(F) を図のように接続したとき指示する電力を求めよ。 また, R=2kΩ, Rp=100kΩ, Rc=1Ω のとき誤差は何%か。 Ro (1) 整流形: (2) 熱電形: 電力: rai Tbi 誤差:

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

図の力の分解がよくわかりません。

2m モータ A VA ワイヤ 20° ZALOM 5m (0,0)m 1000NP (a) 問題 B (0,2)m x. UCA UCB F₁ R C (5,-1)m (b) 図 2.22 【例題2・3】 | Im F となる.これは,未知数, 関する連立 F = (u2yFx-uF)/d, F2 = (-uyFx+u,F,)/d (2.23) MUSTH と表される.ただし,d=ax^2-y. このとき,F, >0となったなら分 カF は と同じ向き, F <0 となったなら逆向きであることを意味する (F2 についても同様).また,各分力の大きさは,それぞれ, |,|,|F2|となる. なお,との方向が同じ場合, d=0となり分解を行うことはできない. JJANKALINAFANA 【例題2.3】 * * * * 図 2.22(a) のようなクレーンで荷物を一定速度で持ち上げている. モータが 1000N の力でワイヤを巻き取っているとき, 点Cに作用する力が部材 AC お よび BC の長さ方向に与える力はいくらか. 点Cに作用する力を各部材の長 さ方向に分解することで求めよ. ただし,部材には力は長さ方向にのみ作用 し,点Cに取り付けられたプーリの径は十分に小さいもとのする. 【解答】 図 2.22(b)に示すように,点Aに原点を持つ座標系を設定して考え る.点Cにはワイヤに沿ってカF と F2 が作用するが, それらの合力 R は以 下のように計算できる 0 5000+00:62) = (1 216.JP F = (-1000cos20°,-1000sin20°)=(-939.7,-342.0)N F2=(0,-1000)N 08 20 R=F+F2=(-939.7, -1342) N 合力 R を各部材の長さ方向に分解する. 点CからAの方を向く単位ベクトル 2001 1 Acred (2.24)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の問題です。 解説してもらいたいのですが、なぜ積分をするのですか?高校物理取ってなくて分からないところだらけなのです。解説お願いします。

[1] 図のように、斜面方向下向きにX軸 (単位:m) をとり,傾斜角0 (単位: rad) の斜面上の最下点からの距離 (単位:m) 最下点を通る基準水平面か らの高さん (単位:m) に原点Oをとる。 半径R (単位:m), 質量M (単位: kg) の剛体球が,時刻 t0Bに点Oから初速0m/sで降下する。 重力加速度 の大きさを(単位:m/') とし, この運動において、力学的エネルギー保存則 が成り立つものとする。 このとき, (1)~(6)に答えよ。 X 剛体球 h まず,剛体球と斜面との間の摩擦が無視できる場合について考える。 (1) 剛体球と斜面との間の摩擦が無視できて、剛体球が回転することなく滑って斜面上を降下するとき、この剛体球の並進運動 の運動方程式を書け。 (4) 斜面上を滑ることなく転がる剛体球の角速度の大きさ : w= であることを説明せよ。 次に, 球と斜面との間の摩擦が無視できない場合について考える。 剛体球と斜面との間の摩擦が無視できないとき,剛体球は 滑ることなく転がって斜面上を降下した。 1=MR² -MR2 であることを示せ。 (2) 半径R (単位:m) 質量M (単位:kg) の剛体球の慣性モーメントⅠ (単位:kg'm') が, I = ただし, 半径r (単位:m), 質量m (単位:kg) の薄い球殻の慣性モーメントが -mr² (単位:kg・m) であること, 半径r (単位:m) の球の表面積が 4πr2 (単位:m') であり、体積が -TTT" (単位:m) であることを、 それぞれ用いてよい。 3 4 3 (3) 剛体球が点Oで静止している状態からの剛体球の質量中心Cの周りの回転角をゆ (単位 : rad) とする。 剛体球と斜面との間 の摩擦力の大きさを F (単位:N) として,この剛体球の運動方程式を並進運動と回転運動に分けてそれぞれ書け。 de のとき、この剛体球の斜面方向の速さ : v=Rw (単位:m/s) dt (5) (3)の並進運動の運動方程式と回転運動の運動方程式を連立して, この剛体球の斜面方向の並進運動の加速度の大きさが gsin0 (単位:m/s) で与えられることを示せ。 5 (6) この剛体球が斜面上を滑ることなく転がるとき, 最下点におけるこの剛体球の斜面方向の並進運動の速さ V(単位:m/s) が V = -gh (単位:m/s) で与えられることを示せ。 10 7

回答募集中 回答数: 0