学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカー部分なのですがmx=-kx+mgではないのですか?

41 -例題 1 ばね振子 ばね定数kのばねについて次の問いに答えよ。 (1) ばねに質量 mの質点を静かにぶら下げた.つり合いの位置におけるばねの 伸び 41 を求めよ.ただし重力加速度をgとする。 (2) (1)の位置からさらに下向きにaだけ引っ張って静かに手を放した. その後 の運動を求めよ。 【解答) (1) ばねの復元力は -k4l であるから, 重力とのつり合いから, kAl= mg 41= mg k 171 (2) つり合いの位置からのばねの伸びを x とすると,質点に働く力は (ばねの復元力)+(重力) 3 ーk(41+x)+mng =-kx (: (1) よって運動方程式は kx mi=-kx =Vとおくと,これは単振動の運動方程式 (5.4)に一致する. よ m って,一般解は 2=Asin(ot +¢) であり,初期条件は t=0 でx=a, v=0 であるから (ただしA,¢は任意定数) A sin p=a Ao cos p=0 これより φ=/2, A=aとなり, 求める解は k x=a cos wt ただし の= m |k ある. これは, 振幅 a,角振動数 ω=, の単振動である。 m 自然長からずれた位置での振動も,つり合いの位置を原点にとれば, 松 【注意】 が楽になる. 本間の場合, 重力はつり合いの位置を決める役目しかしておらず, つ 合いの位置を原点に選べば重力は関係してこない.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

厚さがdと言われているので、写真の黒字の範囲で考えた場合答えは、0、(ρ/εo)z、(ρ/εo)×dになりますか?

2 微分形のガウスの法則を用いて電場を求める 次に,微分形のガウスの法則 P(r) V-E(r) = €o を用いて、平面電荷の作る電場を求めてみよう国,この場合,平面電荷を実は厚みdの板に一様な密度pで分 布している電荷だと考えることになる(図).この仮設は尤もらしい。なぜなら(厚みのない)2次元的な平面 電荷は実際には存在せず,見るものさしを細かくしていけば,いつかは厚みのある板状の一様電荷分布になる だろうからだ、原点を板の厚みの半分のところにとり図口のように座標軸を導入する。こにでも対称性から、 (0,0, di2) p (0,0, -d2) x 図7 電場はzにしか依存せず,z軸に平行な向きであることが分かる。よって(21) 式は次のようになる。 P €O (2.2) 0 ||> d/2 について,対称性から E.(-2) = -E(2) であることに留意すると, -E (2く-d/2) (2.3) E ただしEは定数、また|<d/2に対して E.(2) = 2:+ D (2.4) Dは定数である国z= ±d/2 で電場は連続であるという条件から、 E(d/2) = 2d (2.5) 2+D=E E(-d/2) = pd +D=-E (2.6) €o 2 :E- d 2co D=0. (2.7) ** ひとまずふ関数を用いないで電場を求め,後でもう一度ふ関数を用いて解くことにする。 *9対称性の要請である E(-2) = -E.(2) を満たすためには D=0であることは分かる。 4 2012-05-21ver1, 22ver2, 2013-03-09ver3 ZSO 03Zsd zad ガウスの法則について すなわち, pd 2€0 P. €O pd 2€o (-d/2<:くd/2) (2.8) (こ>d/2).

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーのa(k)はa_H(k)をあらためてa(k)と置いてるということですか?

Xしていく: p) == a'(p)|0), |p,p2) = a'(pi)a'(pa)|0), このようた 態全体は,個数演算子·運動量演算子(I.8節)の固有ベクトル系と」 場の演算子の時間発展を生成消滅演算子によって表現するために,ハイゼン 完全系を構成する.より詳しく言えば,{|0), Ip.…pn) }(n=1,2,.. は,基底として一つのヒルベルト空間(Hilbert space)を張ることにから 量子力学·場の量子論で重要な役割を果たすこの空間と基底は,それぞ。 フォック空間(Fock space),フォック基底(Fock basis)と呼ばれている 必要な手続きは以上だが,上記 (3) には重要な事実が含まれている.すなに ち、{|0), Ip…p,)} が完全系ということは, 任意の物理的状態 ) が n -/IFk, |k,… k,) (ks… k,) (II.31) n=1 =1 と展開できるということである.この展開式は, 「多体系の量子力学と場の量子 論の同等性」も示している.つまり, 右辺の展開係数 (p,.…P,)は, n粒子 系の(運動量表示) 波動関数に他ならず, 従って, )による状態の「場の量子 論的な記述」は,1粒子波動関数, 2粒子波動関数, の総体による「量子力 学的な記述」と同等という訳である。 I.6 場の演算子の時間発展 る ベルク描像に移行しよう. このときゅは 中日(x, t) = e(-o) do(2)e-iH(t-to)

解決済み 回答数: 1