学年

教科

質問の種類

物理 大学生・専門学校生・社会人

マーカーと矢印のところがわかりません、教えてください http://www.yam-web.net/science-note/AM.pdf

導出2 http://hep1.c.u-tokyo.ac.jp/-kazama/QFT/qh4slide.pdf 「量子力学/場の量子論 /Noether の定理」参照 SL Lagrange 微分: を次のように定義する。 SL Te (6,4) OL 8p SL OL 三 p OL 場の運動方程式: =0 次の無限小変換を考える。 x→x'=x+4x (x→x=x"+ Ax") p(x) → p(x) = ¢(x) + 4¢(x) 4は total change(¢(x) からの差分)を表す。 また、中(x)は、(x)= ¢(x) + Ax" 6,¢(x) でもある。 中(x) は場を少しだけ変形したもの、次の項は位置を少しだけずらしたときの差分。つまり、場の形の微小変 化による差分+位置の微小ずらしによる差分= total change となる。 Lie 変分:同一座標点での場の形の変化を Lie 変分と呼びるで表す。 るp(x) = ¢(x) - (x) 上の中(x)に関する2つの式より、 Sp(x) = ¢(x) - (x) = 4¢(x) - Ax" o,¢(x) すなわち total change 4¢(x) は、A¢(x) = ō¢(x) + Ax" o,¢(x) となる。 (x地点では、ふ(x)= ¢(x') - ¢(x') ) 作用S=Jd'xL(¢x), a,4(x))の変化を求める。 S'=[dx L(¢), 6.f(ax)) まず場の変化をx'での Lie 変分で書き表す。すなわちゅ(x) = ¢(x) + 5p(x) 等々。 すると、微小量の一次のオーダーまでとって S'=[dxL(ec). 6,4)+Jd'x( + L -6,54) 第1項をxでの表式に書き換えると、 Ja'r La) =[dxL) d'x=dx =Jdx(L) + Ax" 6,1 ) ヤコビアンは次のように計算される。行列 MをM,= 0, Ax° と定義すると、 TOPページ(総合目次)へ 全文検索は Ctrl+F 11 = detl1 +MI = expTrln(1 + M) ~expTrM~ 1+ 6Ax" OL S'=Jd'x(1+ 0Ax°)(L+ Ax" 0,L + 6,6) ("e)e - 5p T9 この一次近似は、 SL L L -Sp+ 6(- SL 三 6¢ OL =[dx{L+6.(ax" L) + - るみ)} a(6,4) 0.4) =Jdx{L+ + T2 p+ Ax" L)} (0,p) 8p S-S=[dx +s T9 るp+ Ax" L)} - Ja'xL=S 8p (e)e、 =Jdx{e"+ SL ここでは、デ= OL - み+ Ax" L 6,4) SL ゅ= 0 8p 8L L T9 場の運動方程式 8p =0より、 " a(6,4) L L るp+ Ax" Lとしたが、j"= - a(0,4) - 5ゅ - Ax" Lとおいてもよい。) 6j"= 0 (j"=

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マークついたところの問題の解き方わかる方いらっしゃいましたら教えてください!

凝集状態 間 ng ド-ジョーン剛計 の 10 "mr =108 X 10 mi リョょの反沈ポテンシャルエネル半主計 ルゴン 1分子の結合エネル半語を生 記子 AS の分子の平衡原子間距離を求めよ。 ま 3・2 溢体アルゴンが, 平均 12 個の最通 ) れているとした場合 液体の蒸発熱を算出科示 3・3 純ニッケルにおける空孔形成コンみ は, A = 97.3 kl mol "である. 1100 6 にお6 孔分率を算出せよ. 3・4 純金における空孔形成エンタルピーの人 123.5 kl mol !、 その密度は 19281 kg m! であ訪l における単位体積当たりの平衡識孔数を算出直開 3・5 CaO 結晶内の1ショットキー欠陥の形 キーは, 61 eV である. 1000 *C および2000 CIGG8 に存在するショットキー炎陥の数を人算出せよ。 だ泡 の浴度は 3300 kg m * である、 3'6 1500CでMgO 結晶内に存在する ジョラ 大陥の数を算出せよ。ただし。 欠際形成エン用 2 Ag。三 96.5 kimol! その密度は 3580 kgm* である ニー 300Kで4gC結晶内に存在するフレング の数を算出せよ』 ただしAg結晶は単位乃に Ag'イお を4 個有する 1辺 0.555 nm の立方晶であり. 侵入倍 肝に8伯所存在する四面位置とナッ なお, この 合の欠陥形成エンタルピーは Az =269メ 10 本 である 二 0。をモル%のZr0。 と混合じ議 ー公深になるまで加熱 突定化ジルコニア| 4 0 せり YZn0.で示される ナァを抽人的に決定せょ。 ・導性が筆ら和 3 下記の化人物bにちあょか。 きどのような種拓の欠導opし合物aを加え 4 HBr b. CaBr 人が生成するか入>エ 4 CaBr。 b. TBr 4. MgO, b. Fe,0。 3. MgO, b. Nio 3:10 塩化オトリゥムは 重2165 kg mの立方昌でぁ 1 < 056s in調 の Na と CI を有する. これらのテーッ。 はそれそれ 4人 トル (m9 当たりのNi の上数をne て 立方メー

回答募集中 回答数: 0