学年

教科

質問の種類

物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学についての質問です。 応用流体力学の問題なのですが、全くなに言ってるかわからないので、どなたか知っている方がいればお知恵をお借りしたいです。 全然わからないので、お助けいただけると本当に嬉しいです。よろしくお願い致します!! ・1 ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

機械工学科に通ってます。 流体力学の問題についての質問です‼︎ 応用流体力学の問題が全くわからないので、どなたか知っている方がいればお知恵をお借りしたいです。。 すごく、難しいと感じていて困っているので、どうか助けていただければ嬉しいです。 ・(1) パスカルのパラ... 続きを読む

に示す4種類の容器において、 底面の栓に働く全圧力が大きい順に並べ (等号、不等号を用いて), その 理由を述べよ。 また、 各栓の面積は同一断面積 A を有するものとする. (⑥6)> (④)=(d)→(c) → (c)> (a) = (d)>cb) Ⅱ. ヘアドライヤー(図2)とホースを複数使って、 一人の人間(体重 60kg)を浮かせたい。 ヘアドライヤーは少なく とも何個必要になるか推定せよ. 1,260 =77213 lito. 通常のドライヤーの風量は 1.2m²/m 22-4 V₂ 293 373 シャルルの目より Vo - 空間分子程は8×2/+32×1/18= 空気の粘性係数を/4 Z = 温度は 14 ( 30313233-22-4 28.5L-28.8g D= cd A pu² / 2g 1.01 2442 - #9 Ⅲ. エアホッケー(図3)のパックにかかる摩擦力を推定せよ. u (x-J) ett ax word. = const zaz", + y ) N =28.5L 28.8gなので 373Kと仮定する Polaz" NIPT (a) (b) (c) (d) 図1 パスカルのパラドックス Dzmg cd A pu²/29 z mg 図2 ヘアドライヤー u² z とおくと 597 2 mg² 人間の断面を1.7×0.6×0.2 = 0,20m GAPとなる 2mg2 2×60×98 u²3 CdA² =0,4x0,2x10- =1.43x10² u≧11.94.0.02597 よってドライヤーは11.94 ミキマミチ 躰ほど必要である。 図3 エアホッケー 余白が足りない場合は、 裏面に解答可能.

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

高校物理のプリントの穴埋めを教えてほしいです! 調べて分かったところはできる限り埋めました! (力のはたらき 高2 物理基礎)

D00000 カー1 ※2カがつり合わない場合 物理基礎プリント No, 13 大きさが異なる 同じ向き 1. カのはたらきと表し方 作用線が異なる ■力の種類 ■力のはたらき 人によるカ以外に、次のようなものが存在する。 運動(速度)を変化させ。(言い換えると→ [ )を生じさせる) (土也王球)の中心が、すべての物体を引く力(質量に比例する。] 重力の大きさを(重さ )ともいう。 の重力 物体の 形を変える。 面の上に置かれた物体に対して、 面から常に( → 物体の運動(速度) が変化したり、 形が変わったときは、必ず、 力がはたらいている。 の垂直抗力 )な方向にはたらく力 [面が物体を押し返すカ) 力の単位:[N)(読み方: ニュートン )を用いる。 面の上に置かれた物体が、滑ろうとするのを妨げる力。次の2つがある。 静止している物体にはたらくもの → ( 静止摩擦力 ) 動いている物体にはたらくもの → ( 3摩擦力 ■力の3要素 力は、力の(同き)、1大きさ)、1作用点 決めないと、そのはたらきが決まらない。→ カの3要素 )の3つの要素を 動摩擦力 へ 静止摩擦力 動摩擦力 引くカ 引く力 力は矢印を使って表す。 矢印の(-さ)は 力の大きさ、矢印の向きは力の向きを表す。 また、作用点を通り、力の向きに引いた )と言う。 IIT 。 矢印の長さ カの大きさ の張力 まっすぐに張った状態の( )などが、物体を引く力 直線(点線]を力の (ゴム)等。のように、力を加えたとき変形する物体が、元に戻ろうと して、相手の物体に及ぼす力 の弾性力 矢印の向き → カの向き 自然長 ※力を加えたとき変形し、力を取り除くと 元に戻る物体を、一般に弾性体と言う。 伸ばしたとき 矢印の始点 → カの作用点 2. つり合う2カ 縮めたとき 弾性力 2つの力が同時にはたらいているにもかかわらず、 物体が ( 吉-) したまま、ある いは、 フリ合っいる)と言う。 ■つり合う2カの例 [いずれも物体は静止している) )している状態のとき、 その物体にはたらく力は( の重力と垂直抗カ の重力と張力 の重力と弾性カ の引く力と静止摩擦力 (作用線が異なるが回転した いので、つり合いと同じと見 なす。) ■2力がつり合う条件 )が同一 の大きさが( い ③向きは (正反大t? へ

回答募集中 回答数: 0