学年

教科

質問の種類

物理 大学生・専門学校生・社会人

答え教えてほしいです!多くてすみません。

問題 1. 長さ ru のひもの先端に、質量のおもりを結ん で滑らかな水平面上で速さ 2 の円運動をさせ た。 その後、 ひもを円の中心方向に非常にゆっく りと引っ張って、長さを ro/7 にした。 このことに ついて、 下記の問いに答えなさい。 (a) この過程を通じて、 おもりの角運動量は保存 することを示せ。 1点 (b) ひもの長さr が ro≧r ≧ro/7 のときの、 お もりの速さと、 ひもがおもりを引く力の大 きさ F を求めよ。 2点 (c) ひもの長さが ru から ro/7に変化したときの おもりの運動エネルギーの変化量を求めよ。 ・・・1点 (d) ひもがおもりになした仕事を計算し、 おもり の運動エネルギーが増加した理由を説明せよ。 2点 2. 質量が M, 半径が α、 高さ (厚さ) がもの一様な 剛体円柱を考える。 それが、 仰角 6 の斜面を滑ら ずに転げ落ちる運動を考える。 剛体の重心は、常 に一つの平面内を運動し、 回転軸は常にこの平面 に垂直であるとする。 2-18 図に示したように、 重 心が運動する平面を ry平面にとって、重心の座 標を (2G, YG) とする。 また、円柱が斜面から受け る摩擦力の大きさをF、 垂直抗力の大きさをRと する。 Mg R 2-18 図 斜面を転落する円板 (a) (rg, yg) が満たすべき運動方程式を記しなさ い。... 1点 (b) 回転軸周りの力のモーメントの大きさNを 求めなさい。 ... 1点 (c) 回転軸周りの円柱の慣性モーメント Ⅰ を求め なさい。... 1点 (d) 剛体の回転角をとして、心が満たすべき回 転の運動方程式を記しなさい。 ... 1点 (e) 滑らないで転げ落ちるための条件式を記しな さい。 ...1点 (f) F が満たすべき方程式を記しなさい。・・・ 1点 (g) IGが満たすべき運動方程式を記しなさい。... 1点 3. 上記の運動の初期条件を次式で与えるとして、 下 記の問いに答えなさい。 t=0のとき、 πc (0)=L, Uc(0)= =0 drG dt (a) 任意の時刻における v(t) と rc (t) を求 めなさい。... 2点 (b) ro(t)=10Lのとき、 をLで表せ。... 1点 (c) このときの位置エネルギーの減少量Uを求め なさい。 ... 1点 (d) このときの重心の運動エネルギー KG を求め なさい。... 1点 (e) このときの回転エネルギー Krot を求めなさ |1点 い。 (f) この運動に関してエネルギー保存則は成り立 っているかどうか論じなさい。 ・・・1点 (g) 円柱の外枠の質量は無視できるとして、円柱 の中身が質量 M の液体で満たされている場 合を考える。 外枠と液体の間の摩擦が無視で きる場合は、液体は回転せずに滑り落ちると 考えられる。 中身が液体の場合と固体の場合 について、 落下速度がどうなるかについて、 エネルギー保存則と照らし合わせて論じなさ 1点

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

宿題の部分教えて下さい。お願いします

pa -×0= 0 M3 X; = r cos 0 prdrd0 = ; p r2 dr [sin 01 = cos 0 d0 = =x pa3 ×0=0 「M3 1 p r sin 0 prdrd0 = M r2 dr M. [- cos 0] = Yc = sin 0 de = *y よって、重心は。= (0,0) 重心の計算(多重積分) *例題5質量がMで、密度が一様な、底面の半径a、高さが bの 円錐の重心 a-fe r dr M = pdxdydz = de dz = cb ca- r2r X; = r cos0 pr dO dr dz = …= 0 = 0 =x rb ra- r2m 1 Yc = TT r sin 0 pr d0 dr dz = … = 0 cb ca- c2r ZG = (宿題) z pr de dr dz = …→ JaJJA… まとめ * 大きさのある物体の重心を定義して、重心の位置を計算した。 * 地上での重力が大きさのある物体に働く場合、物体の各点で重力が働動くた め、つり合いを議論するとき、その重力の総和を計算する必要がある。 * 大きさのある物体に働く重力の総和は、その物体の重心に全ての重力が働 いた場合とつり合いの式は同じになる。 【宿題11質量M、密度が一様で十分に薄い2辺の長さがaの 直角に等辺三角形の重心を求めよ a a 【宿題2]質量M、密度が一様で十分に薄い半径aで2辺の間 の角が45度の扇型(円を8等分したもの)の重心を求めよ 【宿題31質量M、密度が一様で底面の半径がa、高さが の円錐の重心を求めよ。 (45° a * 宿題1、2、3を解きレポートを提出してください。 締め切りは4月24日の23時59分です。 補足:ベクトルの内積 A-B * AとBのなす角0、大きさ4,B 向きを持たない A.B= AB cos 0 ベクトルのx成分,y成分,z成分 A, = A-e, A, = A· ēy. A-B= A,B,+ AyBy +A,Bz A, =A-。 Ax x軸 ,,。:単位ベクトル = (1,0,0), é, = (0,1,0), é, = (0,0,1) |= | = le|=1, = ,.。 = é,. é, = 0 *分配法則:A-(B +¢) = A· E+ A-¢は成り立つので、 A-B= (A,,+ Ayé, + Azē,). (B,ē, + B,é, + B,ē.) = AxBx + A,B, + A,B。 12

回答募集中 回答数: 0