学年

教科

質問の種類

物理 大学生・専門学校生・社会人

(2.1.1)をどのように展開すれば(2.1.4)になるんでしょうか

2.1 ラグランジュ形式 解析力学の2つの形式,すなわちラグランジュ形式とハミルトン形式についてその 特徴を述べ,両者の関係を考察するのが本章の目的である). まず,ラグランジュ形式から始める. ラグランジュ形式は独立変数として一般座標 g'を用いて記述されるが, ラグランジュ関数Lはgとずで表される。そして, 外的 拘束条件のない場合は, ラグランジュの運動方程式は前節で述べたように d OL TO = 0,(i=1~ N) dt(0g Og' である。これは gi の時間に関する2回微分方程式であり, 一般には N個の独立な方 住式糸である.したがって, これらの方程式を解いて運動を求めるとき, 初期値 g' と 9の両方を指定して運動が一義的に決定される. すると, 力学系の状態を指定するの は9とであるといえるから, g'とがとを変数とする空間を考えると都合がよい。 このような2N 次元空間を状態空間、あるいはハミルトン形式の位相空間(phase *pace)と対応させて, 速度位相空間(velocity phase space)という。 そこで,速度位相空間の座標を(g',g) で表すことにする.は速度 に対応す る変数であるが, gi は一応q' とは別ものとして扱い, q' の時間微分であるfと区別 注*)本章以下,ラグランジュ関数 Lおよびハミルトン関数H は時間を陽に含まないとする.時間に 顕わに依存する場合も, OL/0tの付加項が付くだけで, 以下の考察は本質的に変わりはない。 15

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

3枚目の(1.2.7)や(1.2.8)はどのように出てくるのでしょうか?

ホロノーム系と非ホロノーム系 拘束条件は一般に微分形で与えられる。 力学変数をa' (i=1~N) とすると, 拘束 条件は次のように表される: W。= Qai(z, t)de'+ ba(2,t)dt =D 0, (a=1~b) ここでaは拘束条件の番号を表す添字で, kは拘束条件の数である。aai と bail と時間tの関数で, aai(z,t) は aai(2', 2?, … … aN,t) の略記である. また同一項 で上付き添字と下付添字の現れる場合はその添字について和を取るものとする (和) 号とを省略).したがって, 上式ではiについて1から Nまでの和を取る。 Weのうちで独立でないものは落とし, Waはすべて独立とする.これら w。のうち で積分可能なものがあれば, その拘束条件を積分形で表す方が便利なことが多いそ こで,積分可能なものは積分し 9u(z,t) = Cu, (μ=1~m) と表そう.Cu は積分定数であり, m は積分可能な拘束条件の数である。積分可能で ない残りの拘束条件は W。 = aoi(x,t)de" + b。(x,t)dt' = 0 (0=1~k-m) となる。この場合, 力学系の拘束条件は (1.2.2) と (1.2.3) で与えられることになり, 自由度は N-kである. 3次元空間の中の n質点系の場合は,当然 3n-kとなる。 すべての拘束条件 (1.2.1) がすべて積分可能な場合,つまりk=mのとき, この糸 をホロノーム系 (holonomic system) といい, 積分不可能な拘束条件のある場合を非 ホロノーム系という。 ホロノーム系の簡単な例は, 1質点が2次元曲面上に束縛されている場合である。 例題1.1. 曲面上の運動 曲面への法線成分を n; とすると, 質点の運動は法線に垂直であるから, 拘束条件は w= n;da° = 0

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

F^μγがマーカーで引いたところのようになるというのがよくわかりません どなたか教えてください🙇‍♂️

て<運動方程式 15.4 電場と磁場の統一: フ ー ゲグジージツアル 前項では3次元空間で定義されたマッ クスウェル応 へ拡張することで電磁場のエネルキ\ー . 運動量テン が ここでは電磁場の4元ポテンシャル(4) カテンソルを4炊元時補 レル/縛 を導入したのだ (@/c 4)T から直接的に を定式化する. これによって, 度力は電場と克場統一した4 次元時で しい形式に整理される. まず (4) の微分?2) によって誘導されるぅ 階の反対称 レウォンシクルレ ルーの4リー 4。 (1.91) を定義する. これを電磁場のテンソル (electromagnetic elq tensor) あるいは ファラデーテンツル (Faraday tensor) という. 電磁場の定義式 (1.38)-(1.39), すなわち玉ニ ー(Vの上の4), ーV x 4 を用いて成分を書き下すと 0 1/c >/c 5/c 六際の)半ー証2 ーpg5/c 3 0 。ぢ: ー85/@ 王の二流 0 (gp)ー (1.92) 逆に言うと, 3 次元ベクトル戸と万はファラデーテンソル 瓦, の六つの成分 を取り出して書いたものだと「定義] することができる. ファラデーテンツソルを反変成分で表現すると, ツーのパージイ =謙交Eg7 0 一品/c 一玉/c fs/c 章GE | no 太5/c 3 0 ームBュ 5/c -9> 0 】 (1.25)-(1.26) を用いて計算すると, に 隔の (1.94) 逆たに言う と。 (1.94) がマックスウェルの方程式の後半2 式 (1.25)-(1.26) に相当 する式だと考えることができる 0) 2.3 館で定義する外微分である

未解決 回答数: 1