学年

教科

質問の種類

物理 大学生・専門学校生・社会人

どなたかこの材料力学の問題を教えて頂けないでしょうか?専門分野では無いので困っています。

1. 2004年8月9日、関西電力の美浜原発の配管が破裂し、水蒸気が噴出する事故が発生 しました。図1は蒸気が漏れた個所を示しています。 原因は図2に示すように、流量計 測装置を通過した後の水流の乱れにより配管内壁の摩耗が進み、その結果配管の肉厚が 薄くなって破裂に至ったものです。 図2に示されているように、破裂した配管はもとも との内径540mm、肉厚は 10mm でした。内壁が摩耗したことにより肉厚は最も薄いと ころでは 2mm にまで減少していました。 配管には、引張り、曲げ、ねじりなどの外力が作用しています。これだけ肉厚が減少し たことにより、それぞれの外カに対する強度低下はどのくらいであったかを計算して示 しなさい。 1ッ bn Tte Asahi 事故があった美浜原発3号機の構造 タービン建歴 蒸気が充満 原子炉格納容器 蒸気。 加圧器 水 制御棒 主給水 ボンプ 蒸気が漏れた個所 一冷却水 摩耗が進む 燃料 冷却材 ポンプ 口1次系 2次系 流量計測装置(オリフィス) 図1 図2 復水器から 復水管破損の模式図 (国回力S等さどによる)内経別院 さ15 内径に線られる。 下流に乱れが発生 |破操し高温高圧の水が一 |水蒸気となって噴出 一放水路へ冷却水 ビン

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

流体力学の最初の最初、ラグランジュ微分のところでつまづいて困っております。 二枚目の?をつけた計算過程はどのような微分なのでしょうか? よろしくお願いします。

の1 流れの運動学 8 1 = (u.V)u U のようにして得られた. 記号▽はナブラ (nabla) とよみ 0 鶏分(1.14) 0 マ= e』 + ey Oy 0z のように定義される演算子 (operator) であるす. ea, ey. Ez はそれぞれ』軸, 軸,2軸の正の向きに向かう単位ベクトル (unit vector) で, これらを基本ベク トル (fundamental unit vector)という。 式(1.12) の両辺を At でわって, At →0 の極限をとると,流体粒子の受け る加速度a(z,t) を求めることができ に Au a(x, t) = lim + (u-V) u(z, t) At→0 At Ot D -u(x,t) Dt となる.ただし D +u.V Ot Dt で,D/Dt をラグランジュ微分 (Lagrangian derivative),あるいは実質微 分(substantial derivative), あるいは物質微分 (material derivative) という。 Du/Dt= Ou/0t+ (u.V)uの右辺第1項は, 流体中のある点aをつぎつぎと 通過する流体粒子の速度の時間的変化の割合を表しており,局所加速度 (local acceleration) とよばれている. また第2項は,点cにある流体粒子がある瞬間 にその前後の流体粒子の速度差のために受ける速度の時間的変化割合で対流加 速度 (convective acceleration) とよばれている。 ラグランジュ微分 D/Dtは, オイラーの方法の意味で »とtの関数として表 された量,すなわち 「場の量」に対してのみ作用させることができる. なぜな ら,その定義式(1.16) の右辺は, 独立変数を αとtとするときの偏微分0/0tと ▽によって構成されているからである. aとtの任意関数 f(z,t) のラグラン ジュ微分は,式(1.15) を導いた過程から理解できるように, 流れに伴う f(x.t) の時間的変化の割合,すなわち, 流体粒子の軌跡に沿っての f(z,t) の時間的変 化の割合を表す。 十演算子▽をスカラー関数f(a)に作用させて得られるVfは, f の勾配 (gradient) とよばれ る。▽をスカラー関数に作用させたときは▽の代わりに grad という記号を使ってもよい。す なわち, ▽f=gradf. 後に述べるように, ▽をベクトルとみなしてベクトル関数に作用させ る(内積をとる)ときは, 記号 gradは使わない、ただし、式(1.13) の▽は grad を使って書 くことができる。

解決済み 回答数: 1