学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問1~問3です。答えだけでいいので急ぎでお願いします。

- 課題 - 【問1】次の文章について、空欄に当てはまる適切な言葉や数式を答えよ 正の電荷 +2qと負の電荷 -q が、 それぞれ、点Aと点Bに置かれている。 各電荷はq>0だと仮定する。 また、AB間の距離をaとおく。直線 ABを含む 直線上において、これら2つの電場の強さがゼロになる点を求めたい。 まず、座標系を設定する。点 A を原点とし、A→B を正の方向と決める。直線 AB を含む軸をx軸とおい て、原点からの座標位置をxであらわす。 上の座標系において、1C の電荷をx座標上に置くとき、この電荷が受ける力の向きを各電荷の正負から 考える。まず、この電荷をx<0の位置に置くとき、この電荷が受ける力の方向は( ① )であり、この電荷を 0<x<aの位置に置くとき、力の方向は(2 )、x>aの位置に置くとき、力の方向は( ③ )だから、電 場の強さがゼロになる点は( 4)の範囲にある。 次に、電場の強さ(=D大きさ)を具体的に計算する。電場の強さを、クーロンの法則を用いて、 「位置」と「距 離」の違いに注意して計算すると、正電荷 +2q が位置xに作る電場の強さは( ⑤ )で、負電荷 -qが位 置xに作る電場の強さは( 6:)である。ただし、クーロンの法則における比例定数をんとおく。 以上より、電場の強さがゼロになる点は、x=(7)で求められる。 A +2q) -9 → X a *y JA (9a) 【問2】 次の文章について、空欄に当てはまる適切な言葉や数式を答えよ 図の上うに 名:TのEさが

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

なぜ右の問題では熱量保存則が成り立つのに、 左の問題ではマーカー部の式が成り立たないのでしょうか

チェック問題 2 融解熱 標準7分 水の比熱を4.2J/(g·K), 氷の融解熱(1g融かすのに要する 熱)を336J/gとする。また容器の熱容量は無視できるものとする。 (1) 温度80℃のお湯に温度20℃の水を加えて, 30℃の水6.0Lを つくるには,それぞれの温度の水を何Lずつ混ぜればよいか。 (2)(1)でできた水に0℃の氷を入れたら,20℃になった。氷の 質量は何kgあったか。 解説 (1)(比熱の解法》(p.249)で解く。 図aのように、質量 m,[g], m,[g]を仮定し, 「温度図」 をつくる。 容器の熱容量は無視するので, 容器の熱の出入りは考えてはいけないよ。 吸収熱,放出熱は、 Qm=4.2×m,× (30-20) Qout=4.2×m,× (80-30) 「混合系」なので, Qm=Qoutより. 4.2×m,×10=4.2×m;×50 一方,m,+m,=6000gと合わせて. m,=5000g=5.0kg. m;=1000g==1.0kg よって,20℃の水は5.0L, 80℃の水は1.0L 図bのように、質量 m[g]の氷は,まずア溶ける。次に. ① 20℃まで上昇する。もちろん容器の熱の出入りは無視できる。 Step2 氷が得た熱の和は, Step1 Step2 80℃水m. [g) S Qo。 Step3 -30℃ in 20℃ 水m, [g) Qm 図a 答 (2) Step1 30℃ 水6000g Q=336×m+4.2×m×20 2out -20℃ 氷が溶けたら 水の比熱になるので 1g溶かす熱 0℃水m[g]水 水が失った熱は、 Qout=4.2×6000×(30-20) 「混合系」でQm=Qout 図b Step3 より、 336×m+4.2×m×20=4.2×6000×10 よって, m=600g=0.60kg… 252 物理基礎の熱力学

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

zに対する変分δI₁の出し方がわかりません、教えてください

2 一般相対性理論 i番目(i=1, 2, ……, N) の質点の座標を z"(ri) あるいは略して z(i), 固有時を T () は dz"(ri)ldriを表わす。 また g() とは gpola(i)) のことである。このI さて(2.43) の 2(i) に対する変分を計算してみよう.ここでながi番目の粒 となる。したがって Isは, 任意の座標変換に対してその値が不変, つまりス またその質量をmi とすると, この物理系の全作用積分Iはつぎのようになる: 27 ここでムは Iム=-2mcv-gm()P()E(Hdru (2.43) は次のようにかくこともできる: I、= -2mc||v-g()を()ぜ(みのー2(i)dzid"a. (2.43)) 1 Iはつぎの量である: =1 Jadu 1 1 I,= - 2cK. -g·Rd*a. (2.44) ミ 2cK, 一般にテンソルにV-gのかかった量をテンソル密度とよび, それをもとの テンソルと区別するために花文字で表わすことにする。特に上にでてきたRの ように,スカラーRにV-gのかかった量をスカラー密度とよぶ。 座標変換 →'に対してスカラーは R(x) = R'(x') であるが,スカラー密度は, V-gという量がついているために R(r) = R(®,.) (2.45) あるいは簡単に al2) という関係をみたす。 (2.45) から (e co)5 (2.45) R(x^)d*a' = R(2)d*x = スカラー カラーである。 子の固有時であることに留意すると

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

力学・剛体の問題です。 (1),(2)は恐らくこれかな?という解を求めましたが、(3)以降が分かりません。

以下の問1, II に答えよ。 zA I. 質量m、半径r、厚さ、高さんの密度が一様な剛体とみなせる円 筒(図1)が、水平な床の上を初速度の大きさ 、初角速度の大きさ woで投げ出され、倒れずに滑っていく運動を考える。円筒底面の中 心を原点とし、円筒とともに移動する座標系のz, y, z 軸および偏角 9を図1のように定義する。y軸の正の向きは常に円筒の進行方向と する。偏角0の位置にある円筒底面が床から受ける単位面積あたり の垂直抗力の大きさ N(0) と動摩擦力の大きさ F(6) の間には、μを 動摩擦係数として比例関係 F(6) = μN(0) があるとする。 b 図1 重力加速度の大きさをgとし、重力はz軸の負の向きに働く。また,円筒の厚さ6は半径rよ り十分小さいとする。空気抵抗の影響は無視して、投げ出された円筒の運動に関する以下の問 いに答えよ。 まず、回転させないで円筒を投げ出す場合 (wo = 0) を考える。 (1) 投げ出した円筒の底面全体が受ける垂直抗力および動摩擦力の大きさを求めよ。 (2) 投げ出した円筒が動摩擦力を受けて静止するまでの距離を求めよ。 (3) 円筒に働く慣性力による原点まわりのトルクの大きさを求めよ。 (4) 投げ出した円筒が床の上を滑っているとき、円筒底面に働く垂直抗力は一様ではない。円 筒の前方(0 =T/2付近)と後方 (0 = ーT/2付近)のどちらの垂直抗力が大きいか、理由と ともに答えよ。 以下では、円筒底面に働く単位面積あたりの垂直抗力の大きさが N(0) = a+ Bsin0 と表せる と仮定する。ここでa,Bは定数とする。 (5) 垂直抗力による原点まわりのトルクの大きさをa, 8, r, bのうち必要なものを用いて表せ。 (6) 円筒が倒れずに滑っていくための条件をん, r, uを用いて表せ。 次に、右回り(z軸の正の向きから見て時計回り)に回転させて円筒を投げ出す場合(wo 0) を 考える。 (7) この円筒のz軸まわりの慣性モーメント「および円筒とともに移動する座標系での投げ出 した直後の運動エネルギーを求めよ。 (8) 円筒底面に働く動摩擦力の0依存性により、円筒の軌道は曲がる。その曲がる向きを理由 とともに答えよ。

解決済み 回答数: 1