学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問2の(3)(4)を教えてください

問2. ばね定数 k [N /m] (k > 0) の軽いばねがある。なめらかな水平面上でこ 自然長 のばねの左端を固定し、右端に質量 m kg] の物体を取り付けた。次に、 手で mm 物体を引っ張ってばねを自然長より cm 伸ばしてから静かに手を放した。図 0 に定義された座標軸に基づいて、その後の物体の運動について、以下の間に答 えよ。ただし,時刻 ts]での物体の位置を (t) [m] とし、ばねが自然長のときの物体の位置を原点とする。 (1) Find the restoring force F, [N] that the spring tries to return when the object is displaced by z m from its natural length. (2 points) d'z as its acceleration. dt? (2 points) (2) Find the equation of motion of the object, using the notation of (3) Find the general solution of the equation of motion of the object. (3 points) (4) Find the solution that meets the initial conditions described in the problem. Here, the moment when the hand is released is set as time t==0s. (3 points) 問3.問2では摩擦などの抵抗力がない理想的な単振動を扱ったが、実際には抵抗力が存在する。 抵抗力は速度 dt に比例することが多く、この比例定数をc[N.s/m] (c> 0) とおくと、 運動方程式は教科書 P.66 の(2.40)式として表 される。この方程式の一般解は、 教科書 P.52に示す「定数係数の2階線形同次微分方程式の一般解」として表され、 教科書 P.66 の下段3行に示すような解 a) c)となる。これらの解の導出課程を、 以下の手順に従って示せ。 d。 da. (1)(2.40)式 m = ーkc - c dt? の右辺において、c dt の項の符号がマイナスである理由を考察せよ。 dt (2点)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えてほしいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

材料力学です。 わからないので教えて欲しいです。

レポート課題5-1 1879年にフランスで製作され、1960年まで1 mの基準として用いられ たメートル原器は、全長に一様に作用する自重に対してその両端が水 平を保つように、スパン中央に対して対称な二点で下図のように支持 されていた。このとき突出長さaを求めよ。 W BA a 1 図中央に関して対称な二点支持はり Department of Systems Design for Ocean-Space YNU レポート課題5-2 下図のように左端で単純支持され、左端から距離の位置においてばね 定数kのばねで支持されている桁橋の支持点間に等分布荷重wが作用す る。このとき、ばね支持点から右に長さaだけ突出している部分の先端 が上下に変位しないためには、ばね定数kをいくらにすればよいか。桁 橋の曲げ剛性をEIとする。 a 図右端が不動点となるばね支持はり(分布荷重) Department of Systems Design for Ocean-Space YNU レポート課題5-3 下図に示すように、水平床の端Cより真直棒ABを突き出すとき、自重 によってBC部分は垂れ下がり、CD部分は床より浮き上がる。にのCD 、BC部分の長さをそれぞれ,,2とするとき、比4:½を求めよ。(ヒン ト:CD間を両端単純支持のはりとみなし、CD間の自重を等分布荷重 として受ける場合とCB間の自重をC点の曲げモーメントとして受ける 場合を合成し D点でたわみ角がゼロとなる条件を考えよ へ D C B b 図水平床から突き出したはり Department of Systems Design for Ocean-Space YNU

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

量子力学・スピンハミルトニアンの時間発展について質問です。(1)〜(3)までは画像2枚目のように解いたのですが、(4)(5)の計算がとても煩雑になってしまいました。この方針で大丈夫なのでしょうか?また、(6)が分かりません。どのように考えればよいのでしょうか?

II. 図3のように番号;= 1,2,3で区別される3つのスピンがあり、それぞれ2軸方向に上向 きと下向きの2つの状態 |0);, [1}; をとることができる。2種類の相互作用 角,。を選択的に 切り替え、1番目と2番目のスピンの状態を3番目のスピンによって制御する。簡単のためプ ランク定数を2で割った定数んを1とし、相互作用白,白および時間tを無次元量として取 り扱う。 自。 ○ン 0 9 三 図3 ここで、1は恒等演算子、9, o9は番目のスピンの演算子,の行列表現である。各演 算子は10); = |0):, of° |1}; = -|1); を満たす。また、3つのスピンからなる状態を|1,0)|0}= |1);|0)2|0)s などと記すことにする。 (1) (),(o)°, of o) + ooを計算せよ。 (2) 9 を 10);, |1);に作用させた結果をそれぞれ示せ。 C○ (3) 白のもとでの時間発展演算子む(t) = exp(-8白t) = とーを白t)”が n! n=0 0(t) = cos° (t)i - sin° (t)a{)a£) + icos (t) sin (t)(o{) + )) を満たすことを示せ。ただし、一般に可換な演算子A, Bについて、e(4+B) - eáeb が成り 立つことに留意せよ。 (4) 白のもとで時間む、続いてのもとで時間tzだけ相互作用したときの時間発展は ()()= exp(-iHnt) exp(-iAt)と記述される。10,0)|0), I0,1)|0), |1,0) |0), |1, 1)|10) の4つの状態がひっ(n/4)0,(m/4) の時間発展をしたあとの状態をそれぞれ書き下せ。 次に、ある状態() = a|0,0) |0) + |1,1}10} (a, 8 は定数)を用意したところ、予期せぬ相互作 用により、1番目のスピンが微小回転してしまい、状態|)= VI-) + €)に変化し た。eの具体的な大きさは分からないが、状態|)をもとの状態」)に戻したい。 (5) 状態」)を問(4) のD2(T/4)ü,(T/4) によって時間発展させると、 Us(r/4)(r/4)) = \)) + i¢)10) という状態に変化した。1番目と2番目のスピンからなる状態|), o)をそれぞれ具体 的に書き下せ。 (6) 問(5) の状態に対し、3番目のスピンの測定をおこなうと、状態|)|1) と状態|o)|0)の いずれかが得られる。それぞれの状態に対してさらに個別にある演算子を作用させると、 微小回転量eの情報なしに状態 |) に戻せる。各状態について必要な演算子を答えよ。

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

マーカーと矢印のところがわかりません、教えてください http://www.yam-web.net/science-note/AM.pdf

導出2 http://hep1.c.u-tokyo.ac.jp/-kazama/QFT/qh4slide.pdf 「量子力学/場の量子論 /Noether の定理」参照 SL Lagrange 微分: を次のように定義する。 SL Te (6,4) OL 8p SL OL 三 p OL 場の運動方程式: =0 次の無限小変換を考える。 x→x'=x+4x (x→x=x"+ Ax") p(x) → p(x) = ¢(x) + 4¢(x) 4は total change(¢(x) からの差分)を表す。 また、中(x)は、(x)= ¢(x) + Ax" 6,¢(x) でもある。 中(x) は場を少しだけ変形したもの、次の項は位置を少しだけずらしたときの差分。つまり、場の形の微小変 化による差分+位置の微小ずらしによる差分= total change となる。 Lie 変分:同一座標点での場の形の変化を Lie 変分と呼びるで表す。 るp(x) = ¢(x) - (x) 上の中(x)に関する2つの式より、 Sp(x) = ¢(x) - (x) = 4¢(x) - Ax" o,¢(x) すなわち total change 4¢(x) は、A¢(x) = ō¢(x) + Ax" o,¢(x) となる。 (x地点では、ふ(x)= ¢(x') - ¢(x') ) 作用S=Jd'xL(¢x), a,4(x))の変化を求める。 S'=[dx L(¢), 6.f(ax)) まず場の変化をx'での Lie 変分で書き表す。すなわちゅ(x) = ¢(x) + 5p(x) 等々。 すると、微小量の一次のオーダーまでとって S'=[dxL(ec). 6,4)+Jd'x( + L -6,54) 第1項をxでの表式に書き換えると、 Ja'r La) =[dxL) d'x=dx =Jdx(L) + Ax" 6,1 ) ヤコビアンは次のように計算される。行列 MをM,= 0, Ax° と定義すると、 TOPページ(総合目次)へ 全文検索は Ctrl+F 11 = detl1 +MI = expTrln(1 + M) ~expTrM~ 1+ 6Ax" OL S'=Jd'x(1+ 0Ax°)(L+ Ax" 0,L + 6,6) ("e)e - 5p T9 この一次近似は、 SL L L -Sp+ 6(- SL 三 6¢ OL =[dx{L+6.(ax" L) + - るみ)} a(6,4) 0.4) =Jdx{L+ + T2 p+ Ax" L)} (0,p) 8p S-S=[dx +s T9 るp+ Ax" L)} - Ja'xL=S 8p (e)e、 =Jdx{e"+ SL ここでは、デ= OL - み+ Ax" L 6,4) SL ゅ= 0 8p 8L L T9 場の運動方程式 8p =0より、 " a(6,4) L L るp+ Ax" Lとしたが、j"= - a(0,4) - 5ゅ - Ax" Lとおいてもよい。) 6j"= 0 (j"=

解決済み 回答数: 1