学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問題6、7の答えが分かりません。教えて頂きたいです、、

問題 6 正しいのはどれか。2つ選べ。 1. 電力量は抵抗にかかる電圧と流れる電流の積で表される。 ② 電子1個を IV の電界に逆らって移動させるのに必要な仕事は 1J である。 3.直列に接続された各抵抗に流れる電流量は各抵抗の抵抗値に比例する。 4 回路中の抵抗で消費される電気エネルギーは全てジュール熱に変換される。 ⑤.電気回路の任意の点において、流入する電流の総和と流出する電流の総和は常に等しい。 問題 76本の平行な長い直線の導線が図のように正六角形の頂点A、B、C、D、E、Fの位置に並べられている。これら の導線はいずれも紙面に垂直な方向に張られており、そのうち A、C、D、Eを通る導線には紙面の裏から表の向き、B Fを通る導線には表から裏の向きに、いずれも 1.0Aの電流が流れている。このとき、正六角形の中心0に生じる磁場 の向きで正しいのはどれか。 1. 上向き (OからAに向から向き) 2. 下向き (OからDに向から向き) 3. 左向き (Oから線分 BCの中点に向から向き) 4. 右向き (Oから線分EF の中点に向かう向き) 5. それ以外の向き 問題8 直径1mm、長さ10mの銅線の抵抗 [Ω] に最も近いのはどれか。 ただし、銅の抵抗率はo=1,673×10-°C とする。 BO .O OD F OE

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

6は5よりq=0になりました。 合っているか教えて欲しいです。 5.6が不安です!

原点 0 を中心とし、 厚さを無視できる、 半径 & の導体球殻 A と A より小さい半径 l2 ( l1 > l2) の導体 球殻 B のふたつの導体球殻上に分布する電荷が作る静電場について考えたい。 初めは、 導体球殻 A に電荷量 Q を与え、導体 球殻 B には 電荷を与えない状態にしておく (下図左側参照)。 その後、ふたつの導体球殻を導線Lでつなぎ、その結 果、初めに導体球殻 A にあった電荷のうち電荷量だけが導線L を通って電流として流れ、 導体球殻 B へ移動して静 止した状態になったとする。 ただし、 電荷の移動後においては、電荷は導線L上には分布せず導体球殻 A から B へ電 荷量αの電荷が移動しただけで、 いずれの導体球殻にも新たな電荷は与えないものとする(下図右側参照)。ふたつの導 体球殻上の電荷分布が作る静電場E'(r) は、 球対称性より、 l₁ B Q と書くことができ、 導線Lによる球対称性からのずれは無視できるとして以下の間に答えよ。 ただし、 r = |r | は、原点 から任意の位置までの距離であり、E'(r) はr=|r| のみに依存する求めるべき未知関数である。 また、 rを半径とし て原点を中心とする仮想的な球の領域をV、Vの境界をなす球面を Sとし、導体球殻と導線以外は真空で、真空の誘電 率を co とする。 なお、 r の値によって分類する必要がある場合には明確に場合分けして解答することとし、 問6は、 問 1から問5 までに対して正確かつ明確な導出が記述されている場合にのみ採点対象とする。 0 O l₂ 基礎物理学B 第2回レポート問題 Tº A E(r) =E(r) T T l₁ B Q-9 q O A l2 L ア 1.位置rにおける球面 S上の外向き単位法線ベクトルnを、rとr≡|r | を用いて表せ。 2. 球面 S を貫く電束を計算し(積分を実行すること)、未知関数 E(r) を含む形で表せ。 3. ふたつの導体球殻を導線Lでつなぐ前の状態における未知関数 E(r) の関数形を求めよ。 4. ふたつの導体球殻を導線Lでつないだ後の状態における未知関数 E(r) の関数形を求めよ。 5. ふたつの導体球殻を導線Lでつないだ後の状態において、 導体球殻 A と導体球殻 Bの静電ポテンシャルの差 A-B を線積分によって計算し、gを含む形で表せ。 6. 導体中での静電場の性質を考慮して、 g の値を求めよ。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

1問目の答え合わせがしたいです。 教えて頂けたら幸いです!

【相対運動】 ただし,重力加速度をg (=9.81m/s²) とする. 問1 図1のような時計回りに角速度で回転している大円板の上に,さらに回転することができ る小円板がつけられている. 小円板はモーターのスイッチを入れることで回転させることができる. モーターのスイッチを入れて, 小円板を大円板に対して時計回りにの角速度で回転させた. 図の 位置に来たときの, P点の加速度 αx, ay を求めよ. 問2 対気速度 230km/h の小形飛行機が, 東へ機首を向けて飛ぶと北へ 15° 経路が傾き, 南へ機首を 向けると西へ 17°経路が傾く. 風の方向と風速を求めよ. 問3 西暦 23XX年、人類は巨大な円筒状のスペースコロニーを宇宙空間に建設し生活している. コ ロニーは一定の角速度で回転しており, 内壁部では地上と同じ重力加速度が発生している. ここで生 まれた太郎君は,自分の住んでいるコロニーの半径が知りたくなり,以下の実験を行った. 実験 : 床に目印を描き,そこから真上1mの高さからビー玉を落とす. 実験の結果, ビー玉はコリオリカのため、床の目印から1.60cm ずれて着地した. このコロニーの 半径を求めよ. 問4 問3の太郎君が, ボールを真上に投げたところ, ちょうど4秒後に地上に落ちてきた.このと き, ボールの落下地点はコリオリ力により、 投げた場所とずれていた. 何m ずれているか求めよ. ただし, コロニーの半径はボールを投げ上げた高さに比べて十分に大きく, 風や空気抵抗などの影響 はないものとする. 問5 図2のような半径上に溝を掘った円板がある. いま, 時刻 0おいて,この円板の中心から外側 に向かって, ある物体が溝の上を一定の速度Vで移動し始め,また, 円板も止まった状態から一定 の角加速度αで回転し始めたとき, この物体の加速度 ar, aeを時間の関数として求めよ. 問6 図3のように半径3000mのカーブを時速270km/h の一定速度で走っている列車がある. この 列車の座席に座っているA君が, 幅 1m のテーブルを出して, その上に小球を置いたところ, 静かに 転がり始めた.このとき, t秒後の方向および, 方向の速度をtの関数として求めよ. 図 1 図 2 3000m A君 _270km/h 1 図 3 点O 進行方向 1m A君 テーブル

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

物理の問題です。 解説してもらいたいのですが、なぜ積分をするのですか?高校物理取ってなくて分からないところだらけなのです。解説お願いします。

[1] 図のように、斜面方向下向きにX軸 (単位:m) をとり,傾斜角0 (単位: rad) の斜面上の最下点からの距離 (単位:m) 最下点を通る基準水平面か らの高さん (単位:m) に原点Oをとる。 半径R (単位:m), 質量M (単位: kg) の剛体球が,時刻 t0Bに点Oから初速0m/sで降下する。 重力加速度 の大きさを(単位:m/') とし, この運動において、力学的エネルギー保存則 が成り立つものとする。 このとき, (1)~(6)に答えよ。 X 剛体球 h まず,剛体球と斜面との間の摩擦が無視できる場合について考える。 (1) 剛体球と斜面との間の摩擦が無視できて、剛体球が回転することなく滑って斜面上を降下するとき、この剛体球の並進運動 の運動方程式を書け。 (4) 斜面上を滑ることなく転がる剛体球の角速度の大きさ : w= であることを説明せよ。 次に, 球と斜面との間の摩擦が無視できない場合について考える。 剛体球と斜面との間の摩擦が無視できないとき,剛体球は 滑ることなく転がって斜面上を降下した。 1=MR² -MR2 であることを示せ。 (2) 半径R (単位:m) 質量M (単位:kg) の剛体球の慣性モーメントⅠ (単位:kg'm') が, I = ただし, 半径r (単位:m), 質量m (単位:kg) の薄い球殻の慣性モーメントが -mr² (単位:kg・m) であること, 半径r (単位:m) の球の表面積が 4πr2 (単位:m') であり、体積が -TTT" (単位:m) であることを、 それぞれ用いてよい。 3 4 3 (3) 剛体球が点Oで静止している状態からの剛体球の質量中心Cの周りの回転角をゆ (単位 : rad) とする。 剛体球と斜面との間 の摩擦力の大きさを F (単位:N) として,この剛体球の運動方程式を並進運動と回転運動に分けてそれぞれ書け。 de のとき、この剛体球の斜面方向の速さ : v=Rw (単位:m/s) dt (5) (3)の並進運動の運動方程式と回転運動の運動方程式を連立して, この剛体球の斜面方向の並進運動の加速度の大きさが gsin0 (単位:m/s) で与えられることを示せ。 5 (6) この剛体球が斜面上を滑ることなく転がるとき, 最下点におけるこの剛体球の斜面方向の並進運動の速さ V(単位:m/s) が V = -gh (単位:m/s) で与えられることを示せ。 10 7

回答募集中 回答数: 0