学年

教科

質問の種類

物理 大学生・専門学校生・社会人

15番の解き方が分からないです💦

号 下の文は、 15 答えなさい。 たらきと小 みについて実験したときの会話である。 次の問い に近距離が100mの虫眼鏡を使っており は, ラを作り,どのような像がうつるのか観察をして つきます。では、カメラの作り方を説明しまし <簡易カメラの製作> 外箱 工作用紙で長さ30cmの外箱を作ります。 外箱の正 面に丸い穴を開け、その外しま す。反対側の面は開いています。 図1 虫眼鏡 30cm 外箱 図3 物体A 物体Aを近づける 側面 丸い穴 ⑩ Donggingungan 内箱 外箱に差し込めるよ うに、少し小さい内 箱を作ります。 長さ は30cmです。 内箱 の正面にトレーシン グペーパーを貼り スクリーンとします。反対側の側面は開いていま す。側面に目盛りを貼り, スクリーン側を0cmと します。(図1⑥図2) 内箱 目盛り スクリーン ⑥ 外箱は固定 130cm 図2 「スクリーンスクリーン側を -0cm とする NOUDA martphonebige 内箱 スクリーン 内箱 先生外箱 内箱をスクリーン側から差し込みます。 内箱の開いている方からスクリーンをのぞくと、 外箱の虫眼鏡から入った光により, スクリーンに うつる像を観察することができます。 そして 内 箱を差し込んだ長さを目盛りで読み取ると, 虫眼 鏡とスクリーンの距離を求めることができます。 (図3)。 <実験〉 先生外箱を固定し, 物体Aを虫眼鏡に25cm, 20cm, 15cm, 10cm,5cmと近づけます。 そのたびに スクリーンにはっきりとした像がうつるように, 内箱の差し込む長さを調整します。 はっきりとし た像がうつるところで, スクリーンにできる像の 大きさ,像の向き,内箱を差し込んだ長さを調べ ます。 生徒 物体Aを25cmから虫眼鏡に近づけていき、像が きれいにうつるように内箱を調整すると、内箱の 目盛りの値は ( ① ), 像の大きさは ( ② )なっ ていきます。 スクリーンにうつる像を (③)と 呼ぶのですね。 さらに物体Aを虫眼鏡に近づける 先生 スクリーンに像がうつらなくなりました。 を抜いて、性質の距離が貸して下さい。 虫眼興 を通して像が見えるのが分かります。 問1. (①),(②)に当てはまる語句をア~カから1 つ選び記号で答えなさい。 2 2 ア 変わらず 大きく 大きく イ 変わらず エ 大きくなり 小さく 小さく 大きくなり 大きく オ 小さくなり カ小さくなり 小さく 2. (③)に当てはまる語句を漢字で答えなさい。 問3. スクリーンにうつる像が、物体Aと同じ大きさにな るようにしたい。 次の問いに答えなさい。 (1) 物体Aと虫眼鏡との間の距離を何cmにしたらよい か, 整数で答えなさい。 (2) 内箱の差し込んだ目盛りの値は何cmになるか,整 数で答えなさい。 (3) スクリーン後方から観察できる像はどれになるか。 ア~エから1つ選び記号で答えなさい。 ア イ ウ エ 物体B 問4. 同じ虫眼鏡を使い, 下図のように物体Bを虫眼鏡か ら5cmの位置に置いたとき, 虫眼鏡をのぞくと実物よ り大きな像が見えた。下図は物体Bと虫眼鏡の模式図で ある。 物体Bの先端からでる光のうち, 凸レンズの軸 (光 軸)に平行な光の道すじとレンズの中心を通る光の道す じについて下の図に作図しなさい。 また,虫眼鏡を通し て見える像についても作図しなさい。 ただし, 像を求め るために描いた線は残しておくこと。(※1目盛り2.5cm とする。) 虫眼鏡 凸レンズ) 凸レンズの軸 (光軸) なさい。 (1) 凸レン】 cmか, 答 する。 (2) 半透明 を何とい 実験 2 図 1 電球 物体 凸レンズ 焦点 図3のよ の人形を に凸レン <沖縄県 > 16 凸レンズを用いた簡易型カメラをつくろうと考え, 凸レンズによってできる像について調べるために 次の実験1, 実験2を行った。 あとの各問いに答えなさい。 実験 1 凸レンズの中心 明のスク 2つ (外箱 用いて, のスクリ ぞきなが けた状態 マの人形 問3. 実験 図5の はみ出 ンには かった 半透明の 19 焦点 スクリーン 一点A クリー 切なも なさい は問わ ア イ. ウタ の I. を オ. カ4に半態半とあと 図1のような実験装置を 組み立て, 凸レンズと矢印 が直交した形の穴があいて いる物体を固定し, 半透明 のスクリーンの位置を光学 台の上で動かすことができ 光学台 るようにしておく。 半透明 のスクリーンの位置を動かして, 半透明のスクリーンに はっきりした像を映し、 その像を半透明のスクリーンの 後方から観察した。 図2 問1. 実験1において, 物体の上向きの矢印 点 の先端を点Aとす る。 右の図2は,点 Aから出た光の道す じを模式的に表した ものである。 点Aから出た ① ② の光が、凸レンズを通 過した後の光の道すじをそれぞれ図にかき入れなさい。 問2. 半透明のスクリーンの位置を動かして、 半透明のス クリーンにはっきりした像を映した。 次の (1), (2) に答え -59 問 4. び

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1
物理 大学生・専門学校生・社会人

⑤にてエネルギー保存を示したいのですが、kl(x2-x1)とkx1x2という見慣れない項が出てきてしまいました。これらは何を表すのでしょうか。

(2) ぴっ T M 3=9/² か Imm X=0 10 22 3.1 おもりで ①おもりに対する運動方程式は m x₁ (t) = f ( x₂(+)-(α₁ (+)- l )... (i) ②おもり2に対する運動方程式は oe im m₂ (t) = = k ( X₂ (t)- X₁ (t)) -- (ii) fe X, (+) + 2₂ (²)) = ○分数の ③ cin+cil)を計算するとm(グ(ホ)+税え(たる) 両辺を積分すると m(xi(セ)+((+))=C,(c)・積分定数) 初期条件より C1=mぴなのでmxi(t)+mai(t)=mvo... (iii) よって運動量保存則が導けた。また全運動量Pの値はP=mvoと表せる。 ⑤ (1)xx1+ (ii) ×ュを計算すると m (?: (+) + Int 0₂ (C)棟分定数) ④ ciiUをtで積分するとmixi(t)+(mフェ) (+) ((m) Vott Cz (C2:積分定数) 幸せる。 PA 11 C₂ = 0 +507" m X₁ (t) + m X ₂ (t) = m Vo t すなわち x=1/2(xii(t)+22(t)) = vot と求められる。 2 12(0)²-1(ft t m x₁ x ₁ + m²₂ 21₂ = k ( x, x₂ - x₁ x₁ - x₁) - k (X₂ X₂ - 21₂ 2²₁) - x₂) 友(プ,フューズ、グレーlx)(xマューグロスコ) gift (iit) {-(メレオナズップ2)+ℓ(ゴューズ)+(x,x2+スチュ)}(乃(土) 両辺で積分すると下式のようになる。ただしC3は積分定数とする 無条件より積分定数にD 1/2/mx²+1/2/m252²={-(1/²+1/22^²)+ℓ(チュース)+x,x2}+C3 ・2 2 (TED² = mx²₁ ²2+ = mx ₂ + 1 X ² = = RX₂² - kl (X₂-X₁) - 12 X₁ X₂ = C3.

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

問1で間違えたのですが、図1における理想気体の温度を出すのに、内部の圧力(P1と置きました)を求めなきゃいけません。自分は、力のつりあいの式として、「P1S=P・2S」よりP1=2P としてしまいましたが、解答では「液面の高さが等しいので、この気体の圧力は大気圧に等しくPで... 続きを読む

II 図1のように、液体が入っているシリンダーAとシリンダーBがあり,水平管 で連結されている。これらのシリンダーには、 それぞれ断面積 Sm?]のピストン A と断面積2S[m?)のピストンBが取り付けられている。これらのピストンの厚 みと質量は無視でき, シリンダー内を滑らかに上下運動できるものとする。ピスト ンAの上部の空間に x[mol] の単原子分子理想気体が閉じ込められている。理想気 体は図1のように加熱 冷却器による加熱と冷却が可能であり, それ以外の熱の出 入りはないものとする。一方、 ピストンBの上部は圧力 P[Pa]の大気圧である。 ここで、気体定数をR[J/(mol·K)], 理想気体の比熱比をY, 液体の密度を p (kg/m°),重力加速度の大きさを g[m/s°]とする。理想気体の温度と圧力はピス トンAの上部の空間の内部で均ーとし, 液体の密度は常に一定とする。また,加 熱·冷却器の体積と熱容量は無視できるものとする。 以下の問いに答えよ。なお, 解答は問題文で示されている記号のみを用いて行うこと。 問 1. 図1のように, 加熱 冷却器による加熱を行う前の初期状態では,ピストン AとピストンBの高さは等しく, ピストンAの上部の空間の高さはL[m] で あった。 (1) このときの理想気体の温度を求めよ。

未解決 回答数: 1