学年

教科

質問の種類

物理 大学生・専門学校生・社会人

問題6、7の答えが分かりません。教えて頂きたいです、、

問題 6 正しいのはどれか。2つ選べ。 1. 電力量は抵抗にかかる電圧と流れる電流の積で表される。 ② 電子1個を IV の電界に逆らって移動させるのに必要な仕事は 1J である。 3.直列に接続された各抵抗に流れる電流量は各抵抗の抵抗値に比例する。 4 回路中の抵抗で消費される電気エネルギーは全てジュール熱に変換される。 ⑤.電気回路の任意の点において、流入する電流の総和と流出する電流の総和は常に等しい。 問題 76本の平行な長い直線の導線が図のように正六角形の頂点A、B、C、D、E、Fの位置に並べられている。これら の導線はいずれも紙面に垂直な方向に張られており、そのうち A、C、D、Eを通る導線には紙面の裏から表の向き、B Fを通る導線には表から裏の向きに、いずれも 1.0Aの電流が流れている。このとき、正六角形の中心0に生じる磁場 の向きで正しいのはどれか。 1. 上向き (OからAに向から向き) 2. 下向き (OからDに向から向き) 3. 左向き (Oから線分 BCの中点に向から向き) 4. 右向き (Oから線分EF の中点に向かう向き) 5. それ以外の向き 問題8 直径1mm、長さ10mの銅線の抵抗 [Ω] に最も近いのはどれか。 ただし、銅の抵抗率はo=1,673×10-°C とする。 BO .O OD F OE

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

東北大学令和5年度AO入試理学部物理系の問題です。解答がない上、解きすすめ躓きました。よければ(4)以降教えていただけると幸いです。よろしくお願いします。

問2 図2のように xy平面内を運動する荷電粒子を考える. 紙面表から裏向きに磁束 密度の大きさBの一様な磁場がかけられている. 荷電粒子の質量をm, 電荷をg (g>0) とする. 重力の影響および荷電粒子の運動による電磁波の放射は無視できるとする. 以下 の問題では、粒子の速度および加速度が粒子の位置(x,y) の時間tによる微分を用いて, dx dy) および (az,ay) = dvdvy と与えられることに注意すること. (Vx, Vy) = dt' dt. dtdt (1) my 平面内での荷電粒子の速度が (vェ,y), 加速度が (azsay) のとき, 荷電粒子の運 動方程式を m, ax, ay, Us, y, 豆, B を用いて表せ. (2) 荷電粒子の時刻t = 0 での速度が (ux, y)=(V,0)であるとき,一般の時刻 t (t> 0) での速度は (ひz, y) = (V cos wt, V sin wt) となる. ここでw, V は定数で ある. この式を問 (1) の運動方程式に代入することによりωを求めよ. 次に図3のように, 一様磁場に加えて,大きさ E の一様な電場をy軸の正の向きに加 える. (3) 荷電粒子が時間によらない一定の速度 (uz, Uy) で運動しているとき,その速度 (ux, uy) を B, E で表せ. う (4) 問 (3) 一定速度 (uz, Uy) で動く観測者からみた荷電粒子の速度を (ぴっぴY), 加速 度を (ds, dy) とするとき, 運動方程式をm,d's dy, 2,4,B,Eのうち必要なも のを用いて表せ. (5) (4) において, 時刻 t = 0 での速度が (v^2)=(V', 0) であるとする. 問 (2) の 結果に注意して,一般の時刻t (t> 0) での (vay) をt,w, V' を用いて表せ.ここ 問 (2) 解である. (6) 静止している人から見て, 荷電粒子が時刻 t=0において位置(x,y)=(0,0) から 初速度(vェッuy) = (0,0)で運動をはじめた. (a) 時刻t (t > 0) での荷電粒子の速度 (vx, y) を t,w, B, E で表せ. (b) 時刻 t (t > 0) での荷電粒子の位置 (x,y) をt,w, B, E で表せ. (c) 荷電粒子はæ軸 (y = 0) から離れたあと, 時刻 t = T (T> 0) で再び軸上に 戻った. t = 0 から t = Tまでの荷電粒子の軌跡の長さLをw, E, B で表せ. 磁場B 速度(vェッy) 荷電粒子 図2 -X 磁場B 図3 電場E IC

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解き方が全くわかりません。どなたか解いてくださる方いませんか?

[1] 力 (F)と電力 (仕事率) (P) の次元式を物理式から求めよ。 また, キャパシタンスCと抵抗Rの積CRの次元を物理式(Q=CV, V=RI) を利用して求めよ F: P: CR: [2] a-b間に100√2 sin 300 [V] の電圧を加えた時の各電圧計 [3] 銅線の直径D、長さL、抵抗Rを測定して銅線の抵抗率をpTD2R/4L なる の値を求めよ。 ただし、 正弦波の波形率K=1.11とする。 関係式から求める場合, D,L,Rの測定誤差がすべて2%のときのの最大誤差 を求めよ。 ao bo Vm V1: 0 :最大誤差 [4] 下図の方形波電圧を可動コイル形電圧計で測定したら100Vのとき, (1) 整流形電圧計と(2) 熱電形電圧計で測定するとそれぞれ何Vを指示するか。 ただし、正弦波の波形率K=1.11 とする。 T/2 IA F ra T 3T/2 2T [5] 2個の直流電圧計V1 (最大目盛150V, 内部抵抗20kΩ)とV2 (最大目盛300V,内部抵抗30kΩ)を直列に接続して最大何Vまで測れるか。 M V2: 答: [6] 定格値=10mA, 内部抵抗RA=450Ωの電流計に下図のように抵抗を接続し, 端子(1)のとき100mA, 端子(2)のとき1Aの電流を測定するために は、抵抗をいくらにすれば良いか Rp (2) d RA I V1,V2: 可動コイル形 V3:整流形 「b V3: (1)8 RV t [7] 電流力計形計器の可動コイル(M)と固定コイル(F) を図のように接続したとき指示する電力を求めよ。 また, R=2kΩ, Rp=100kΩ, Rc=1Ω のとき誤差は何%か。 Ro (1) 整流形: (2) 熱電形: 電力: rai Tbi 誤差:

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

赤線の数値ってどこから来たんですか? 分かる人教えて欲しいです。

解答は導き方も簡単に示して下さい。 1. 真空中を振動数 v [1/s] の光子が進んでいるとき、この光子の運動量の大きさはいくらか。 ただし、プランク定数を h [Js]、 真空中の光速をc[m/s] とする。 2. 黒体放射において、 黒体の温度を上昇させた場合、 放射光のエネルギー密度のピークの波長はどうなるか。 3. 光電効果において、入射光子の強度を増加すると、 放出される光電子はどうなるか。 4. 単色のX線を炭素の結晶に照射したとき、炭素の結晶中の電子によって散乱されたX線の振動数は、散乱角が大きく なるとどうなるか。 5.à=1、β=1としたとき、 [àâ, ] を求めよ。 6. 領域 (0≦x≦ a) では質量mの粒子1個が自由に運動しているが、この領域外には出られないという1次元の量子力 学系を考える。この系の波動関数は重(z)= = Vaz sinzz) (n=1,2,3,...) で与えられる。 第2励起状態において、粒 子の存在確率が一番低い点の座標の値を求めよ。 7.3 次元の直方体の箱の中に質量mの粒子が1つ閉じ込められている量子力学系を考える。 直方体のx,y,z 方向の辺の 長さがそれぞれ2a、α、 α のとき、 基底状態、 第1励起状態、 第2励起状態はどのような量子状態か。r,y,z 方向の量 子数 nx, ny, nz, (nony,n=1,2,3,...) の組み合わせ (n, ny, nz) を用いて答えよ。 8. 原子核の質量を無限大とした近似では、水素類似原子系のエネルギー準位は、En = -Z2 Rochen と表される。ここ で、Zは原子番号、 R. はリュードベリ定数、んはプランク定数、cは真空中の光速、 n(n=1,2,3,...) は主量子数を それぞれ表している。 この近似のもとで Be + の 2p軌道から 1s 軌道へ電子が遷移した時に放出される光子の振動数は いくらか。 記号を用いて答えよ。 9. 球面調和関数 Y5, -3(0, 0) に対する軌道角運動量の大きさの2乗を表す演算子 と軌道角運動量の成分を表す演算子 の固有値を求めよ。 10. 原子軌道をラッセルーソンダースカップリングで考える。 マグネシウム原子 Mg の基底状態の配置 1s22s22p 3s2 の全 スピン角運動量量子数の値はいくらか。 また、 その値になる理由を説明せよ。 11. 原子軌道をラッセルーソンダースカップリングで考える。 ベリリウム原子 Be の励起状態の配置 1s22s 2pl の取り得る 可能な軌道すべての項の記号を書け。 12. 区間 0≦x≦ a に閉じ込められた粒子を考える。非摂動状態では、この区間内では、粒子に働くポテンシャルは0 とする。この区間内に摂動として (1) = -esin' (™z/a) (sは正の定数)が加わった場合を考える。基底状態の非摂 動波動関数は (0) = sin(πz/a) である。この状態に対するエネルギーの一次補正を求めよ。計算には積分公式 a ∫ sin(ax)dx = 誓 on sin(ar) cos(az) - do sin' (az) cos (az) +C (C は積分定数) を用いてよい。 8a 13. 水素類似原子の 2p 軌道における電子の距離の逆数の期待値 <-> 2p を求めよ。ただし、動径方向の波動関数は Z +2 1/16 (3) ²0 2√6 で表され、 Z は原子番号、 α はボーア半径を表す。 R2.1(r)= re-(Z)r 14. 授業中に紹介した20世紀以降に生まれた物理学者1名の名前 (苗字だけでよい) を示して、その人の業績を説明せよ。

未解決 回答数: 1