学年

教科

質問の種類

物理 大学生・専門学校生・社会人

図の力の分解がよくわかりません。

2m モータ A VA ワイヤ 20° ZALOM 5m (0,0)m 1000NP (a) 問題 B (0,2)m x. UCA UCB F₁ R C (5,-1)m (b) 図 2.22 【例題2・3】 | Im F となる.これは,未知数, 関する連立 F = (u2yFx-uF)/d, F2 = (-uyFx+u,F,)/d (2.23) MUSTH と表される.ただし,d=ax^2-y. このとき,F, >0となったなら分 カF は と同じ向き, F <0 となったなら逆向きであることを意味する (F2 についても同様).また,各分力の大きさは,それぞれ, |,|,|F2|となる. なお,との方向が同じ場合, d=0となり分解を行うことはできない. JJANKALINAFANA 【例題2.3】 * * * * 図 2.22(a) のようなクレーンで荷物を一定速度で持ち上げている. モータが 1000N の力でワイヤを巻き取っているとき, 点Cに作用する力が部材 AC お よび BC の長さ方向に与える力はいくらか. 点Cに作用する力を各部材の長 さ方向に分解することで求めよ. ただし,部材には力は長さ方向にのみ作用 し,点Cに取り付けられたプーリの径は十分に小さいもとのする. 【解答】 図 2.22(b)に示すように,点Aに原点を持つ座標系を設定して考え る.点Cにはワイヤに沿ってカF と F2 が作用するが, それらの合力 R は以 下のように計算できる 0 5000+00:62) = (1 216.JP F = (-1000cos20°,-1000sin20°)=(-939.7,-342.0)N F2=(0,-1000)N 08 20 R=F+F2=(-939.7, -1342) N 合力 R を各部材の長さ方向に分解する. 点CからAの方を向く単位ベクトル 2001 1 Acred (2.24)

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

初めての質問です! 物理基礎なのですが、例題の回答のところで、ベクトルABの大きさをもとめる際の式がなぜ10×√2なのか教えて欲しいです。三平方の定理では無いのでしょうか。

15 B 10 図12のように,速度で走行しているバスAと,速度vg で走行し ているバスBを考える。 このとき, A に乗っている人が見るBの速度, すなわちAに対するBの相対速度 AB は、次のように求められる。 -> VAB = VB UB - VA (10) DAB=DB-DA VB B VB このように 考えてもよい Aに対するBの 相対速度 VAB VAB = UB-VA VB VA A ⓘ図 12 平面上の相対速度 例題1 相対速度 1秒後 UB VA A 雨が鉛直に降る中を,電車がまっすぐな線路上 を一定の速さ10m/sで水平に走っている。 雨 滴の落下の速さを10m/s とすると,電車内の 人が窓から見る雨滴の速さと, 雨滴の落下方向 と鉛直方向とがなす角の大きさを求めよ。 解 電車の速度をVA, 雨滴の速度を UB, 電車 内の人から見た雨滴の相対速度をVAB とす る。 UB これら3つのベクトルの関係は図のように なるので,雨滴の落下方向と鉛直方向がな す角の大きさは 45° VAB の大きさ=10×√2 = 10 × 1.41・・・ ≒ 14m/s (v2≒1.41 p.263) 20 類題 1 雨が鉛直に降る中を, 電車がまっすぐな線路上を一定の速さで水平に 走っている。 このとき, 電車内の人が見る雨滴の落下方向は、鉛直方向 と 60°の角をなしていた。 雨滴の落下の速さを10m/s とするとき, 電 車の速さを求めよ。 1956 [17m/s] VA -VA -O 10 10m/s 10m/s O VA 45° VAB

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

宿題の部分教えて下さい。お願いします

pa -×0= 0 M3 X; = r cos 0 prdrd0 = ; p r2 dr [sin 01 = cos 0 d0 = =x pa3 ×0=0 「M3 1 p r sin 0 prdrd0 = M r2 dr M. [- cos 0] = Yc = sin 0 de = *y よって、重心は。= (0,0) 重心の計算(多重積分) *例題5質量がMで、密度が一様な、底面の半径a、高さが bの 円錐の重心 a-fe r dr M = pdxdydz = de dz = cb ca- r2r X; = r cos0 pr dO dr dz = …= 0 = 0 =x rb ra- r2m 1 Yc = TT r sin 0 pr d0 dr dz = … = 0 cb ca- c2r ZG = (宿題) z pr de dr dz = …→ JaJJA… まとめ * 大きさのある物体の重心を定義して、重心の位置を計算した。 * 地上での重力が大きさのある物体に働く場合、物体の各点で重力が働動くた め、つり合いを議論するとき、その重力の総和を計算する必要がある。 * 大きさのある物体に働く重力の総和は、その物体の重心に全ての重力が働 いた場合とつり合いの式は同じになる。 【宿題11質量M、密度が一様で十分に薄い2辺の長さがaの 直角に等辺三角形の重心を求めよ a a 【宿題2]質量M、密度が一様で十分に薄い半径aで2辺の間 の角が45度の扇型(円を8等分したもの)の重心を求めよ 【宿題31質量M、密度が一様で底面の半径がa、高さが の円錐の重心を求めよ。 (45° a * 宿題1、2、3を解きレポートを提出してください。 締め切りは4月24日の23時59分です。 補足:ベクトルの内積 A-B * AとBのなす角0、大きさ4,B 向きを持たない A.B= AB cos 0 ベクトルのx成分,y成分,z成分 A, = A-e, A, = A· ēy. A-B= A,B,+ AyBy +A,Bz A, =A-。 Ax x軸 ,,。:単位ベクトル = (1,0,0), é, = (0,1,0), é, = (0,0,1) |= | = le|=1, = ,.。 = é,. é, = 0 *分配法則:A-(B +¢) = A· E+ A-¢は成り立つので、 A-B= (A,,+ Ayé, + Azē,). (B,ē, + B,é, + B,ē.) = AxBx + A,B, + A,B。 12

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

さっぱりわかりません。

つ熱量=低温物体が得る熱量 基本例題 26 熱と仕事 アフリカにあるビクトリア滝は, 落差110m, 水量は毎分1.0×10°mといわれる。 重力加速度の大きさを9.8m/s', 水の比熱を4.2J/(g-K) とする。 (1)落下した水の運動エネルギーがすべて熱に変わるとしたとき, ビクトリア滝で 122,123 1秒間に発生する熱量Q[J] を求めよ。 (2) (1)の熱量が水温の上昇に使われたとして, その温度の上昇4T[K] を求めよ。 (3) この水を利用して水力発電を行うとして, 得られる出力 (仕事率) P[W] を求め よ。ただし, 水車の効率は 50%とする。 m 換される 10°」 しい がした 」より 指針 mgh [J]の質量mの単位に kg を用いるので, 熱量の計算には m×10°[g] として用いる。 落下した水の運動エネルギー=はじめの位置エネルギー 解答(1) 1m°の水の質量は 10°kgであるか ら,1秒間に落下する水の質量 (2) Q=(m×10°)×cx4T より mgh Q mc×10° gh AT=- 三 ニ m [kg] は mc×10° 10°c (1.0×10°)×10°_10° 60秒 9.8×110 10°×4.2 =0.256…=0.26K 121 -kg 60 三 mミ 1秒間に発生する熱量は, 1秒間に 気体失われる力学的エネルギーに等しい から 熱」 (3)仕事率は1秒当たりにした仕事で(1)のQ に等しいから 50 P=Q×=(1.79×10°)×- 50 100 10° -×9.8×110 100 Q=mgh=- 60 =8.95×10°号9.0×10°W =1.79…×10°%1.8×10°J

回答募集中 回答数: 0