学年

教科

質問の種類

物理 大学生・専門学校生・社会人

15番の解き方が分からないです💦

号 下の文は、 15 答えなさい。 たらきと小 みについて実験したときの会話である。 次の問い に近距離が100mの虫眼鏡を使っており は, ラを作り,どのような像がうつるのか観察をして つきます。では、カメラの作り方を説明しまし <簡易カメラの製作> 外箱 工作用紙で長さ30cmの外箱を作ります。 外箱の正 面に丸い穴を開け、その外しま す。反対側の面は開いています。 図1 虫眼鏡 30cm 外箱 図3 物体A 物体Aを近づける 側面 丸い穴 ⑩ Donggingungan 内箱 外箱に差し込めるよ うに、少し小さい内 箱を作ります。 長さ は30cmです。 内箱 の正面にトレーシン グペーパーを貼り スクリーンとします。反対側の側面は開いていま す。側面に目盛りを貼り, スクリーン側を0cmと します。(図1⑥図2) 内箱 目盛り スクリーン ⑥ 外箱は固定 130cm 図2 「スクリーンスクリーン側を -0cm とする NOUDA martphonebige 内箱 スクリーン 内箱 先生外箱 内箱をスクリーン側から差し込みます。 内箱の開いている方からスクリーンをのぞくと、 外箱の虫眼鏡から入った光により, スクリーンに うつる像を観察することができます。 そして 内 箱を差し込んだ長さを目盛りで読み取ると, 虫眼 鏡とスクリーンの距離を求めることができます。 (図3)。 <実験〉 先生外箱を固定し, 物体Aを虫眼鏡に25cm, 20cm, 15cm, 10cm,5cmと近づけます。 そのたびに スクリーンにはっきりとした像がうつるように, 内箱の差し込む長さを調整します。 はっきりとし た像がうつるところで, スクリーンにできる像の 大きさ,像の向き,内箱を差し込んだ長さを調べ ます。 生徒 物体Aを25cmから虫眼鏡に近づけていき、像が きれいにうつるように内箱を調整すると、内箱の 目盛りの値は ( ① ), 像の大きさは ( ② )なっ ていきます。 スクリーンにうつる像を (③)と 呼ぶのですね。 さらに物体Aを虫眼鏡に近づける 先生 スクリーンに像がうつらなくなりました。 を抜いて、性質の距離が貸して下さい。 虫眼興 を通して像が見えるのが分かります。 問1. (①),(②)に当てはまる語句をア~カから1 つ選び記号で答えなさい。 2 2 ア 変わらず 大きく 大きく イ 変わらず エ 大きくなり 小さく 小さく 大きくなり 大きく オ 小さくなり カ小さくなり 小さく 2. (③)に当てはまる語句を漢字で答えなさい。 問3. スクリーンにうつる像が、物体Aと同じ大きさにな るようにしたい。 次の問いに答えなさい。 (1) 物体Aと虫眼鏡との間の距離を何cmにしたらよい か, 整数で答えなさい。 (2) 内箱の差し込んだ目盛りの値は何cmになるか,整 数で答えなさい。 (3) スクリーン後方から観察できる像はどれになるか。 ア~エから1つ選び記号で答えなさい。 ア イ ウ エ 物体B 問4. 同じ虫眼鏡を使い, 下図のように物体Bを虫眼鏡か ら5cmの位置に置いたとき, 虫眼鏡をのぞくと実物よ り大きな像が見えた。下図は物体Bと虫眼鏡の模式図で ある。 物体Bの先端からでる光のうち, 凸レンズの軸 (光 軸)に平行な光の道すじとレンズの中心を通る光の道す じについて下の図に作図しなさい。 また,虫眼鏡を通し て見える像についても作図しなさい。 ただし, 像を求め るために描いた線は残しておくこと。(※1目盛り2.5cm とする。) 虫眼鏡 凸レンズ) 凸レンズの軸 (光軸) なさい。 (1) 凸レン】 cmか, 答 する。 (2) 半透明 を何とい 実験 2 図 1 電球 物体 凸レンズ 焦点 図3のよ の人形を に凸レン <沖縄県 > 16 凸レンズを用いた簡易型カメラをつくろうと考え, 凸レンズによってできる像について調べるために 次の実験1, 実験2を行った。 あとの各問いに答えなさい。 実験 1 凸レンズの中心 明のスク 2つ (外箱 用いて, のスクリ ぞきなが けた状態 マの人形 問3. 実験 図5の はみ出 ンには かった 半透明の 19 焦点 スクリーン 一点A クリー 切なも なさい は問わ ア イ. ウタ の I. を オ. カ4に半態半とあと 図1のような実験装置を 組み立て, 凸レンズと矢印 が直交した形の穴があいて いる物体を固定し, 半透明 のスクリーンの位置を光学 台の上で動かすことができ 光学台 るようにしておく。 半透明 のスクリーンの位置を動かして, 半透明のスクリーンに はっきりした像を映し、 その像を半透明のスクリーンの 後方から観察した。 図2 問1. 実験1において, 物体の上向きの矢印 点 の先端を点Aとす る。 右の図2は,点 Aから出た光の道す じを模式的に表した ものである。 点Aから出た ① ② の光が、凸レンズを通 過した後の光の道すじをそれぞれ図にかき入れなさい。 問2. 半透明のスクリーンの位置を動かして、 半透明のス クリーンにはっきりした像を映した。 次の (1), (2) に答え -59 問 4. び

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

(2.1.1)をどのように展開すれば(2.1.4)になるんでしょうか

2.1 ラグランジュ形式 解析力学の2つの形式,すなわちラグランジュ形式とハミルトン形式についてその 特徴を述べ,両者の関係を考察するのが本章の目的である). まず,ラグランジュ形式から始める. ラグランジュ形式は独立変数として一般座標 g'を用いて記述されるが, ラグランジュ関数Lはgとずで表される。そして, 外的 拘束条件のない場合は, ラグランジュの運動方程式は前節で述べたように d OL TO = 0,(i=1~ N) dt(0g Og' である。これは gi の時間に関する2回微分方程式であり, 一般には N個の独立な方 住式糸である.したがって, これらの方程式を解いて運動を求めるとき, 初期値 g' と 9の両方を指定して運動が一義的に決定される. すると, 力学系の状態を指定するの は9とであるといえるから, g'とがとを変数とする空間を考えると都合がよい。 このような2N 次元空間を状態空間、あるいはハミルトン形式の位相空間(phase *pace)と対応させて, 速度位相空間(velocity phase space)という。 そこで,速度位相空間の座標を(g',g) で表すことにする.は速度 に対応す る変数であるが, gi は一応q' とは別ものとして扱い, q' の時間微分であるfと区別 注*)本章以下,ラグランジュ関数 Lおよびハミルトン関数H は時間を陽に含まないとする.時間に 顕わに依存する場合も, OL/0tの付加項が付くだけで, 以下の考察は本質的に変わりはない。 15

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

なぜ、黄色で囲ったところのような式が出るのか教えてください!

昌 回渡の波融 ュ導位 これまでは, 一直線上を伝わる ( 波に (eeで(は 波について学んた に 面上を伝わる波について考えよ 6 回19 小波画 水面上の 1 点を振動させると, 当 波源を中心に円形の波紋が広がる( る(軌19紀でのとき, 同じ では振動の状態, すなわち位相が等しい。 これらの位相が等し ねた面を 波面 といい. 波が平面になる波を 平面江。 wave front 2 なる波を 球面没 という。波面は波の進む向きと常に垂直であ< spherical wave 水面上の 2 点を振動させると, これらの点を波源とする波が広が る(図 20)。このとき, 山と山(谷 と谷) が重なりあう場所は振幅が 大きくなる。また, 山と谷が重な りあう場所は, 振動を弱めあう。 四20 水画洲の証渉 ---は螺めあう を結んだ線の一部を示した。 このように, 波が重なって振動を 強めあったりめあったりする現象を 波の干渉 という。 図21 をもとにして, 強めあう場所と, 時めあう場所の条件を式で表 そう。 振幅 4 で同位相(一方が山のとき他方も山。 一孝が谷のきき他方も倒) で振動する 2 つの流源Su。 S。 から出る波の波長をえとずる波源S, S。 (MM ぁ とすると, 距離の差は | と家す 渉の条件は次のようになる。 強めあう点 : |』ー叫4=2mX今 選めあう点 : |』ー引 =+計4=(2w+1) x誠 0 AS 5 若 で さ破線 | ) は, 波源 Q。 5。 を点とする双曲線となる。 また, 法旨 * 出 っ>

解決済み 回答数: 1